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Work in Thermodynamics
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The expression for mechanical work obtained in the expansion of a gas
commonly used in physical chemistry textbooks is critically examined.
The mathematical form of the first law of thermodynamics is arrived at
by a procedure that is consistent with the common definition of mechanical
work. The treatment is extended 1o explain the concept of reversible and

~ irreversible work.
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INTRODUCTION

When physical chemistry textbooks!™® develop the concept of work as part of
their introduction to the first law of thermodynamics, they almost invariably start
with the definition of work with which that the students are familiar. This definition,
namely, the magnitude of mechanical work equals force multiplied by the distance
through which the force acts, is one of the first concepts that the students have
learned previously in a physics course.

However, when the books apply this definition to the expansion of a gas
contained in a cylinder with a piston, they use the opposing pressure rather than the
pressure of the gas. The textbooks' development of the expression for the work of
expansion goes along these lines: For a gas expanding against a frictionless piston
and the piston moving from a position ato b, against anopposing force F,,, the work
is

b b
-] Fedx=-] (F/A)A dx,
a &

where A is the area of cross-section of the cylinder. Now, since F, /A = P,, and
A dx =dV, where P, is the external pressur, and V the volume of the gas, one
gets the relation:

kw=—J: Pey dV

Most accounts emphasize that the pressure in the formula is the one against
which work is done; in other words it is the opposing pressure. In an expansion,
when the volume of the gas is expanding, the opposing pressure is the outside
pressure and one gets the above expression for work.

However, for a compression process, where the opposing pressure is clearly the
pressure of the gas, the textbooks still use the external pressure. This is done without
explanation, which must be a source of confusion for an inquiring student.

There have been attempts to address this anomaly, although the fundamental
incompatibility with the accepted definition of work remains unresolved. Bertrand’
in a recent article gives a lively account of the discussion that took place over 40
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years ago and summarizes four protocols thatemerged from it. These are: (i) use the
opposing pressure in each case (P, for compression and P, for expansion); (ii) use
P., when the process is stopped by factors in the system, otherwise use Pe,; (i) use
P, in all cases and (iv) use P, in all cases. The matter remains unresolved to this
day Bauman® while pointing out that for a compression process the pressure of the
gas, P,, should be used in the expression for work, still leaves in place the deﬁmuon
of work in terms of the force opposing the motion. Kivelson and Oppenheim’® use P,
in the expression for work for expansion and P, for compression in an 1rreversnble
process, although the arguments leading to this implicitly assume the vahdnty of the
first law of thermodynamics. It has been pointed out by Canagaratna'® that using the
first law to introduce the concept of work and then using this work to explain the
law, introduces circularity in pedagogy. This is obviously unsatisfactory.

Other attempts to explain this and other anomalies have resulted in authors
defining various types of work. Thus “thermodynamic work™ has been presented as
a distinct quantity from classical mechanical work, which is the result of all the
forces acting on the piston“ Several other types of work, such as internal work,
macroscopic work, pseudo work, conservative work, among others, have been
devised. These are reviewed by Mallinckrodt and Leff'?, who list at least eight
different types of work.

It makes a difference whether pressure of the gas or the external pressure is used
to define work for a process where the two pressures are not the same, i.e., for an
irreversible expansion. As is shown below the difference between the two expres-
sions equals the kinetic energy of the piston and weights supported by it. However,
the expression for the change in internal energy can be shown to be the same
irrespective of which definition of work is used, provided heat is appropriately and
differently defined in each case.

Definition of Work in Mechanics: 1f we adhere to the accepted definition of
work, we can resolve the inconsistency in the prevailing treatments, which define
work in terms of opposing pressure, but still use the external pressure when it is not
the opposing pressure (as in a compression). Work as defined in mechanics, has
nothing to do directly with the opposing force, although the work done by the two
forces is related by the principle of conservation of energy. The two quantities,
however, are not always equal. Even when they are equal, defining the work of the
system via the work of the surroundings, implicitly assumes the validity of the first
law, leading to the above-mentioned circularity.

Whenever a force, F (or pressure), is being applied to a moving boundary, work
is said to be done because of this applied force. This work equals F dx where dx is
the distance the boundary moves in the direction of the force. Any opposing force is
doing its own work. The other important concept from mechanics is that the agent
applying the force (and hence doing the work) undergoes a change in its energy
equal to the work. ‘

Work of opposing forces: To make the above point clear, let us consider the
- setup in the diagram, where two opposite but unequal forces are acting on a body in
opposite directions (Fig. 1). The forces are assumed to be constant for the duration
being considered. The body is assumed to have a mass, butisin frictionless contact -
with the ground.

Suppose the force acting in the +x direction was 4 N, and the opposing force, the
one in the —x direction, was 3 N. Suppose the distance that the body moved in the +x
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Fig. 1. Two forces acting on a body in opposite directions. Each force does its own work
independently of the other.

direction under the resultant force was 2 m. Then the work done by the 4 N force
would be 4 N times 2 m, or 8 J. The work done by the other force would be 3 N times
(~2x), or -6 J. The minus sign arises because the displacement is in a direction
opposite to the force. Whatever agent was exerting the 4 N force would have lost 8
J of energy, and whatever agent was exerting the 3 N force would lose —6 J, or in
other words gain +6 J of energy. From this example, it is clear that each force has its
own work associated with it, independent of the opposing force. Overall, the
resultant work done by both the forces in the setup will equal the resultant force in
the x-direction (4 — 3) N multiplied by the displacement of the body in that direction
(2 m), which is 2 J. This work of 2 J will appear as kinetic energy of the
body. However, if our interest were limited to the agent applying the 4 N force (in
other words, if that agent were our systent), we would state that the system has lost
8 J of energy.

System: In order to apply this argument to the expansion of a gas, we first
define a system. We consider a gas in a cylinder fitted with a frictionless vertical
piston, capable of supporting weights (Fig. 2). The gas forms the system. The
cylinder and piston are placed in a vacuum so that the movement of the piston does
not encounter any air resistance. The weights supported by the piston are not part of
the system. The cylinder is assumed to be sufficiently tall so that the piston is not
pushed out of the cylinder during an expansion process before equilibrium is
reached. The system is in thermal contact with a calorimeter, which is itself
thermally isolated from the rest of the surroundings. The temperature of the
calorimeter at the beginning of the process can be chosen to suit the process. Thus
for an isothermal expansion, the calorimeter will need to be at a higher temperature
than the system, whereas it will be at a lower temperature for an isothermal
compression. The thermal contact between the calorimeter and the system can be
broken when desired, e.g., for an isothermal process, the contact is maintained for
as long as is necessary to maintain the temperature of the system at the desired
value. : ~

Heat: The energy that is transferred by means other than by movement of the
walls separating the system from the surroundings is called heat. Thus heat, q, is
defined as the thermal energy that flows into the system across the boundary from
the calorimeter and is determined from the change in the temperature of the
calorimeter during the process.

Isothermal compression: Let us consider an isothermal process. Initially the
system is at equilibrium; the pressure of the gas is balanced by the weights
supported by the piston. If the weights on the piston are increased, the piston starts
moving down and the gas starts getting compressed. When the pressure of the gas
again becomes equal to the outside pressure, the process ends and the system attains
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equilibrium again. The question concerning us is: “What was the work of the system
in this process?” We answer this by invok-
ing the definition of work and apply that =
definition to this process. Since it is the - B
system that is of concern to us, we need to
consider the force on the system side of the
moving boundary.

dw = (force exerted on the boundary by
the system) X (differential displacement of system i
the boundary in the direction of the ‘ |
force) = P, x area of the moving bound- Cal
ary X dl =P, dV.

Here dl, the differential displacement of
the boundary, is positive for expansion g, o

‘ ksurround'ings

The system comprising the gas con-

(being in the same direction as the force), tained in a cylinder. The cylinder is
and negative for compression. The infini- in thermal contact with a calorime-
tesimal quantity of work is denoted by the ter (labelled Cal in the diagram),

which is a part of the surroundings,
but is thermally insulated from the
rest of the surroundings.

symbol dw to emphasize that w is not a
property of the system and dw is not an
exact differential®. The lower case w is
used to denote work resulting from the force exerted by the system, while W
denotes work due to the forces external to the system. Thus the two symbols
distinguish the present treatment (in terms of Py) from the treatment using P,,.
The above expression for work is a specific case of the general definition,
according to which work is the product of a generalized force and a generalized
coordinate. The coordinate in this case is the variable length of the cylinder
containing the gas, and the force is a function of this length. The classic article
by Redlich!® deals with the concept of generalized force and coordinates and
describes how the system is influenced by the surroundings only through the
coordinate.

Since the pressure of the gas is always outwards, P, dV is a positive quantity
for expansion, and negative for compression. As outlined earlier, if the motion of
the boundary is in the direction of the force, the energy of the system applying
the force decreases and vice versa. ‘

Just as P, dV is the work done by the system and affects its energy, P, dV is
the work done by the external forces (in this case weights on the piston), and
affects the energy of the surroundings. An analysis of the process of compression
outlined above is instructive. Since during the compression, there is a net
downward force on the piston, the piston acquires acceleration, in accordance
‘with Newton’s Second Law. The piston acquires kinetic energy, which, following
our example of the mass being acted on by two opposite forces in Fig. 1, equals

(Py— Pe) dV. This is a positive quantity for this process, since Pg <Pex and
dV < 0. This kinetic energy, KE, is dissipated within the gas. The piston eventually
stops moving as a result of P, becoming equal to P,,. We can write
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[P, - P)dV =KE

whence, [p,dv-|P, dVv=KE (1)

Isothermal expansion: The dissipation of the kinetic energy of the piston
as heat is visualized easily in the case of compression treated above, but the same
argument applies to the case where the gas expands and the piston moves
outwards in the vacuum. The system is assumed to be initially at equilibrium,
with the pressure of the gas being equal to the external pressure at the outset.
Some weights are then removed from the piston and the gas starts expanding,
progressively decreasing the pressure of the gas. Eventually, the pressure of the
gas becomes equal to the external pressure. Since the piston is frictionless and
the expansion is in vacuum, the piston continues to move outwards in accordance
with Newton’s First Law. Any further expansion, however, also results in the
outward force (due to the pressure of the gas) becoming smaller than the opposing
force (due to gravity), so that a net downward force results, causing a reversal in
the direction of the motion. The result is oscillatory movement causing a damping
of the motion, eventually bringing the piston to a halt. The kinetic energy is again
dissipated within the gas as thermal energy, since outside the system a vacuum
exists, and the gas presents the only medium with friction. The situation 1is
analogous to a stone being thrown vertically up (assuming no friction with air),
and eventually returning to earth, with its kinetic energy dissipated as heat on
contact with the ground. Eq. 1 is thus valid for both compression and expansion.
For this case, too,

[®,-Pav>o,
since now P,>P, and dv > 0.

Adiabatic volume change: The treatment above also applies to adiabatic
processes, where there is no heat transfer between the system and surroundings;
the only heat is that generated by the damping of the motion. As long as the only
possible medium for the dissipation of the kinetic energy is the gas, the only heat
generated is within the gas. Eq. (1) is valid in this case too.

First Law: The statement of the first law, applied to the case of a gas
undergoing a change in volume and exchanging heat with the surroundings, is:
dU = Heat supplied to the system — work done by the system =q — w,

or for an infinitesimal change
dU =dq —dw )

The internal energy, U, is a property of the system, which implies that dU is
an exact differential. For the corresponding incremental quantity of heat the
symbols dq is used, since heat (like work) is not an exact differential.

The negative sign before w is in recognition of the fact that the signs of energy

change and work (as defined in mechanics) are opposite to each other, since if
forces within a system produce (positive) work, then the energy of the system
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decreases by an amount equal to the work done. In view of this treatment of work,
the negative sign before w is more logical than the convention usually adopted
at present, whereby a positive sign is used. The statement of the Law, moreover,
asserts that internal energy also changes as a result of loss or gain of thermal
energy by the system. For the processes discussed above, the kinetic energy
always ends up in the system, and contributes positively to U.

The statement can be expressed in the integral form as:

U=q+KE-[P,dV 3)

In view of our definition of heat (thermal energy transferred by means other
than through the movement of the walls), the kinetic energy does not qualify as
heat, so it must be considered part of work. Then,

AU=q-w, where w=-KE+|P,dv 4)

Piston encountering external frictional resistance in an adiabatic process:
What happens when the set up is modified and the system is placed not in a
vacuum, but in air where the moving piston encounters air resistance during
expansion? The system is also assumed to be enclosed within adiabatic walls; the
only exchanged between the system and the surroundings (which include the
calorimeter) is through the movement of the piston. The process, in other words,
is adiabatic. Suppose the weights on the piston are decreased and P,, < P, and
the gas starts expanding. When the two pressures become equal, the expansion
stops after oscillating. The kinetic energy is dissipated in the surroundings and
the system because of this oscillation and the resulting friction. For simplicity,
let us consider the limiting case where all of the kinetic energy ends up in the
surroundings. The other extreme where all the kinetic energy ends up in the
system has already been treated above. Clearly the magnitude of the work done,
and the energy lost by the gas equals j P, dV. In other words,

AU=-[Pdv )

Correspondence between the two definitions of work: To see how Eq. (3)
relates to the statement of the first law that uses Py, we combine Eq. (1) and Eq.
(3) and introduce a quantity Q = q + k.e., to get:

AU=Q-[P,dV=Q+W 6)

This suggests that the two treatments give the same result (apart from the
convention of sign of work), provided heat is defined differently from how it was
_defined for the purpose of Eq. (3). The use of different symbols, q and Q, is in
recognition of this fact. Q is the total heat (comprising the thermal energy
transferred between the system and the calorimeter plus the kinetic energy, which
eventually gets dissipated as heat). Unlike g, this heat, Q, has a component that
is transferred through the movement of the walls.



Vol. 18, No. 3 (2006) Work in Thermodynamics 2001

Let us examine the case when the system encounters external resistance (the
treatment leading to Eq. (§)). Combining Eq. (5) with Eq. (3), we get

AU=-[P,dV-KE=W+Q

Here W is the work defined in terms of the external pressure and the kinetic
energy is identified as heat, since it ends up increasing the temperature of some
part of the surroundings, even though it would not be identified as heat if the
definition above (for g) is used. This process is not “adiabatic” in the usual sense
of the term, even though the system is enclosed in insulated walls.

Reversible and irreversible processes: It becomes simple to explain the
concept of reversibility in the context of the treatment above. The processes where
kinetic energy appears are irreversible, since the kinetic energy ends up as thermal
energy and is dissipated. When no kinetic energy appears, the process is said to
be reversible. This would be the case when the difference between P, and P, is
infinitesimally small and there is no net force to impart acceleration to the piston.
This is a simpler and a far clearer way to introduce the otherwise difficult concept
of reversible work during the expansion of a gas. A more comprehensive treatment
of reversibility, which deals not only with isothermal, adiabatic expansion and
compression, but also with temperature change at constant volume and constant
pressure, is given by Battino er al.'.

Conclusion

It makes a difference whether work is defined in terms of the pressure of the
gas or the external pressure in an irreversible expansion. The two treatments can
be reconciled by appropriately defining heat and by taking into account the kinetic
energy changes in irreversible expansion.
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