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Molecular modelling analysis using molecular mechanics, semi-
empirical DFT calculations was carried out to investigate Jahn-
Teller effect in Cu®* placed in octahedral ligand fields. The results
show that both semi-empirical and DFT calculations can predict the
axial distortion in octahedral Cu(II) complexes. However, the agree-
ment between observed and calculated Cu(ll) ligand distances are
found to be much greater with DFT calculations than with semi-
empirical calculations.
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INTRODUCTION

Six-coordinated copper(ll) generally display octahedral geometry with a
tetragonal elongation along a four-fold axis' so that there is a planar array of four
shorter Cu-L (where L stands for a ligand) bonds and two trans long ones. For
example, in Cu(HzO)z(NH3)§+ it is found that 4Cu-N distances are all equal to
2.05 A whereas the Cu-O distances® are 2.59 and 3.37 A. There are also numerous
cases in which apparently octahedral Cu(ll) complexes exhibit a pulsating
Jahn-Teller effect’. o

The d° configuration makes Cu(Il) subject to Jahn-Teller distortion. The
theorem may be stated as follows: Any non-linear molecular system in a
degenerate electronic state will be unstable and will undergo some kind of
distortion that lowers its symmetry and split the degenerate state. Although the
theorem tells us that a regular octahedral complex may be unstable with respect
to a distortion, it does not tell us anything about the magnitude of distortion. A
very small distortion (small enough to escape detection by most techniques), could
in principle satisfy Jahn-Teller requirement®. The aim of the present study was to
investigate how well molecular modelling analyses based on semi-empirical and
DFT calculations could predict the Jahn-Teller distortion in Cu(II) when placed
in an octahedral ligand field. Specifically, the structures of the complex ions:
Cu(NH;),(H,0)3", CuCl,:2H,0, Cu(H,0)2*, Cu(NH.)2, CuCly(H,0)*" and
CuSO45H,0 were optimized based on PM3 and DFT calculations using the
molecular modelling program Spartan’02°.
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- EXPERIMENTAL

The structures of Cu(NH;),(H,0)3*, CuCl,2H,0, Cu(H,0)z*, Cu(NH;)¢",
CuCl,(H,0)*" and CuSO,-5H,0 were optimized based on molecular mechanics,
semi-empirical and DFT calculations using the program Spartan’02. The calcu-
lated Cu(lIl) ligand distances were then compared with the reported values to find
out the success of the calculations in predicting the Jahn-Teller distortions in the

complexes.
Spartan’02 calculations

The structures were first optimized based on molecular mechanics calculations
based on MMFF94 force field. The structures were then optimized based on
semi-empirical calculations using the routine PM3. Finally, the structures were
optimized based on DFT calculations using the basis set 6-31G*. The six Cu(II)
ligand bond distances (two axial and four equatorial) for each structure optimized
by semi-empirical and DFT calculations were then recorded and compared with
the experimentally observed values. The spin multiplicity of Cu(Il) was set at
two.

RESULTS AND DISCUSSION

Table-1 gives the observed and calculated Cu(Il) ligand bond distances for the
complexes:  Cu(NH;),(H,0)3%, CuCl,2H,0, Cu(H,0)3*, Cu(NH.)Z* and
CuCl4(I{20)z". It can be seen that for CU(NH3)4(HZO)§+, the observed axial Cu-O
bond lengths are 2.59 and 3.37 A and the four equatorial Cu-N bond lengths are
each equal to 2.05 A. The corresponding values from PM3 calculations are axial:
Cu-0:2.043 and 2.041 A and the equatorial 4Cu-N: 1.937,1.942, 1.937 and 1.942
A. The values from DFT calculations are axial: Cu-O bond distances: 2.202 and
3.710 A and equatorial 4Cu-N bond distances: 2.022, 2.044, 2.066 and 2.099 A.
It can be seen that although both PM3 and DFT calculations have been able to
predict axial elongation, the results obtained from DFT calculations agree much
more closely with the experimentally observed values. When we compare the
results for CuCl,2H,0, it is found that both PM3 and DFT calculations
underestimate the extent of elongation of the two axial Cu-Cl bond lengths (the
observed values being 2.98 and 2.98 A whereas the predicted values are from
PM3: 2.129 and 2.129 A and from DFT: 2.261 and 2.261 A). However, once
again the agreement is found to be better for DFT calculations than for PM3
calculations. The same conclusion can be made for Cu(H,0)#, Cu(NH;)?*,
CuCl,(H,0)*" and CuSO,-5H,0. '

Conclusion

Although both semi-empirical and DFT calculations can predict qualitatively
the axial elongation in Cu(lIl) ligand distances in octahedral ligand field, the
agreement between observed and calculated Cu(ll) ligand distances is much
greater with DFT calculations.
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