NOTE

Synthesis and Pharmacological Activities of Some Schiff Bases Derived from N,N'-Bis(4-ethoxyphenyl)malonamide

ALKA PRADHAN*, DEVIDAS DAWANDE, DEEPAK DESHMUKH and ANIL TRIPATHI†

Department of Chemistry, Motilal Vigyan Mahavidyalaya, Bhopal-462 002, India

Series of the Schiff Bases (1a-m) of N,N'-bis(4-ethoxyphenyl) malonamide (1) are synthesized by the condensation reaction between compound 1 and substituted aromatic amines. Compound 1 is obtained by condensation of 4-ethoxy aniline and diethylmalonate. The resulting compounds are characterized by spectral data and evaluated for antihistaminic activity. Most of the compounds have shown interesting biological activity.

Key Words: Synthesis, Schiff bases, N,N'-Bis(4-ethoxyphenyl) - malonamide, Antihistaminic activity.

A variety of Schiff bases $^{1-4}$ were reported to possess interesting activities like anti-tubercular, bacteriostatic, anticancer activities. The synthesis of starting material N,N'-bis(4-ethoxyphenyl)malonamide were synthesized by reported method in 62–68% yield. Thirteen different substituted anilines reacted with N,N'-bis(4-ethoxyphenyl) malonamide in presence of conc. H_2SO_4 and produced the new compounds 1a-m.

Synthesis of Schiff bases

A mixture of N,N'-bis(4-ethoxyphenyl)malonamide (0.01 M) with 4-nitroaniline (0.01 M) and catalytic amount of conc. H₂SO₄ (about 1 mL) in ethyl alcohol (50 mL) was taken in a round bottom flask with air condenser heated for 1.5 h. The product separated was cooled, filtered, washed with ethyl alcohol and recrystallized from 95% ethanol to yield bright yellow coloured crystalline compound; yield 83%, m.p. 111°C. Similar procedure was employed in the preparation of other compounds (Scheme-1).

EtO—Ar—NH—C=O
$$CH_2 + NH_2 - Ar$$

$$EtO—Ar—NH—C=O$$

$$EtO—Ar—NH—C=N—Ar$$

$$CH_2$$

$$EtO—Ar—NH—C=N—Ar$$

$$CH_2$$

$$EtO—Ar—NH—C=N—Ar$$

R: (1a) = H, (1b) = 2-methoxy, (1c) = 4-methoxy, (1d) = 2-chloro, (1e) = 3-chloro, (1f) = 4-chloro, (1g) = 2-nitro, (1h) = 3-nitro, (1i) = 4-nitro, (1j) = 2-methyl, (1k) = 3-methyl, (1l) = 4-methyl, (1m) = 4-ethoxy

Scheme-1

The formation of the starting compound N,N'-bis(4-ethoxyphenyl)malonamide has been clearly indicated by the characteristic IR spectra which show absorption band in 3274–3089 cm⁻¹ region arising from the asymmetric and symmetric stretching vibration of the two N—H bands (2° amino groups), respectively. Further, the presence of a sharp band at 1666 cm⁻¹ is due to v(C=O) group.

The formations of the Schiff bases (1a-m) were confirmed by the difference in m.p. and characteristics of IR peaks at 1660-1600 v(C=N str.) and $1170-1110 \text{ cm}^{-1} \text{ v}(\text{N}-\text{H } str.)$.

(1c): ${}^{1}H$ NMR (DMSO-d₆) (δ ppm): 7.30 (1H, —NH—), 9.76–9.26 (8H, arom.), 8.43 (8H, arom.), 4.70–4.26 (3H, —OCH₃) and 2.33 (3H, —CH₃). (1j): 7.13 (8H, arom.), 8.86 (8H, arom.), 11.8 (1H, —NH), 3.46 (2H, —CH₂) and 2.33 (3H, —CH₃).

Antimicrobial activity: All the synthesized compounds (1a-m) were evaluated for their antimicrobial activity by disc diffusion method⁶ at a concentration of 100 µg/mL. Bacterial cultures used for the study were *S. aureus*, *B. subtilis*, *S. typhi*, *P. vulgaris*, *E. coli* and *P. aeruginosa*. The activity was compared with streptomycin (100 µg/mL) as standard compound (Table-1).

TABLE-1
PHYSICAL AND ANTIMICROBIAL DATA OF COMPOUNDS (1a-m)

Comp.	R	m.p.	Zone of inhibition (in mm)					
			S. aureus	B. subtilis	S. typhi	P. vulgasis	E. coli	P. aeruginosa
1a	H	90	23	21	32	31	25	30
1.b	2-Methoxy	102	29	22	-	. 10	28	29
1c	4-Methoxy	106	33	32	17	14	31	29
1d	2-Chloro	101	33	32	17	14	31	23
1e	3-Chloro	107		15	30	27	35	36
1f	4-Chloro	115	11	19	19	25	23	24
1g	2-Nitro	104	21	30	29	28	35	15
1h	3-Nitro	107	34	35	20	25	29	28
li	4-Nitro	111	33	20	19	27	35	36
1j	2-Methyl	102	16	13	0.7	14	22	25
1k	3-Methyl	113	29	28 #	25	15	35	15
11	4-Methyl	115	07	19	23	22	20	14
1m	4-Ethoxy	120	20	19	29	28	31	
	Streptomycin		55	49	45	52	65	42

Antihistaminic activity: Compounds 1h, 1c, 1g, 1j and 1m were subjected to antihistaminic activity. Degranulation of mast cell was done as reported⁷. Male wistar rats were sacrificed by stunning and the peritoneal cavity was lavaged with 10 mL of tyrode solution. The lavaged fluid was collected and centrifuged at 2000 rpm for 5 min. The pellet was separated, washed with tyrode solution and finally resuspended in 1 mL tyrode solution. 0.1 mL of this lavaged fluid was transferred to 8 tubes (in duplicate). The lavaged fluid was then subjected to the following treatment schedule.

The cells were added with test drug and then incubated for 10 min at 37°C.

Compound 48/80 (0.1 mL, $10 \,\mu\text{g/mL}$) was added to each test tube except test tube no. 1. After further incubation for $10 \,\text{min}$ at 37°C . 0.1 mL of 10% toluidine blue was added and examined under microscope. A minimum of $100 \,\text{cells}$ Counted for intact and disrupted mast cells and from it % protection from degranulation was calculated.

Rat's peritoneal mast cells (10 cells/mL) were pre-incubated in presence of test materials (100 μ g/mL) and standard drug Ketotifen (10 min at 37°C). Compound 48/80 (10 μ g/mL) was added and cells further incubated for 20 min at 37°C. The reaction was stopped by putting the tubes in ice. Cells were centrifuged (400 × g for 5 min) and histamine was measured in supernatant according to Shore *et al.*⁸. (Tables 2 and 3).

TABLE-2
EFFECT OF PURE COMPOUND ON COMPOUND 48/80 INDUCED RAT
PERITONEAL MAST CELL DEREGULATION

Compd. No.	Treatment	Protection from deregulation (%)
Control cells	(Cells + $100 \mu \text{g/mL}$) + $48/80$	85
1b	(Cells + $100 \mu \text{g/mL}$) + $48/80$	82
1c	(Cells + $100 \mu g/mL$) + $48/80$	8
1g	(Cells + $100 \mu g/mL$) + $48/80$	35
1.j	(Cells + $100 \mu g/mL$) + $48/80$	76
1m	(Cells + $100 \mu \text{g/mL}$) + $48/80$	58

TABLE-3
EFFECT OF PURE COMPOUND ON COMPOUND 48/80 INDUCED RAT
PERITONEAL MAST CELL DEREGULATION

Comp. No.	Test concentration (µg/mL/105 cells)	Effect (%)
Ketotifen		and the second s
(known mast cell stabilizer drug)	100 μg	85.56
1b	100 μg	29.70
1c	100 μg	12.10
15	100 μg	8.15
1j	100 μg	27.80
Im	100 μg	7.80

REFERENCES

- 1. G.P. Ellis and G.B. West, Progress in Medicinal Chemistry, Butterworth & Co Ltd., London, Vol. 5, p. 320 (1968).
- 2. J. Casazar and J. Morva, Acta Pharm. Hung., 53, 121 (1983).
- 3. V.V. Laxmi, P. Shridhar and H. Polasa, Indian J. Pharma. Sci., 47, 202 (1985).
- 4. V.I. Cohen, N. Rist and C. Duponchel, J. Pharma. Sci., 66, 1332 (1977).
- 5. Ku.S. George and P.I. Hyerath, J. Res. (Sci.) Agra, 12, 77 (1963).
- 6. C.H. Collins, Microbiological Methods, Butterworth's, London, p. 364 (1967).
- 7. T.J. Kanemoto, T. Kasugai, A. Yamatodani, H. Ushio, T. Mochizuki, K. Tohya, M. Kimura, M. Nishimura and Y. Kitamura, *Int. Arch. Allergy Immunol.*, **100**, 99 (1993).
- 8. P.A. Shore, A. Burkhalter and V.H. Cohn., J. Pharmacol. Exp. Ther., 18, 127 (1959).

(Received: 21 October 2005; Accepted: 2 May 2006)

AJC-4886