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A comparative study was undertaken to test the ability of differ-
ent methods to predict the retention indices of a series of ‘acrylates
using statistical treatment as criteria of fit. In this paper, a three-layer
back-propagation neural network was applied to analyze the QSAR
of acrylates in gas chromatography on five different stationary
phases. Nine topological indices, Wiener, Balaban, Harary, Shultz,
Zagreb, and Randic of first, second, third and fourth order were
calculated using a computer program in comparison with the multi-
linear regression and stepwise methods. The results showed that the
ANN modet outperformed the MLR predictions. The training phase
of the ANN model was extremely short owing to the high perfor-
mance of the Levenberg-Marquardt algorithm.
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INTRODUCTION

‘Gas chromatography is a very important analytical tool for simple and complex
compounds. However, for complex systems, it can be difficult to find optimum
conditions for relatively speedy separations with a satisfactory resolution. Most
of the time, these conditions are obtained by means of experimental trials. It is
therefore obvious that this approach is not only tedious but can be costly too.

One of the most important parameters in gas chromatography is the retention
index. The latter is a useful tool for the comparison of retention data obtained by
various authors in different conditions, as it is nearly independant on many of the
parameters and conditions of the gas chromatography analysisl. It depends on
temperature, the stationary phase and the solute. Hence for isothermal operations
and for a fixed stationary phase, the retention index becomes only a function of
the structure of the solute, in other words, on the topological indices of the solute.

" The topological indices reflect the molecular shape, branching and composition.

Topological indices can be advantageously exploited to predict certain physico-
chemical propertiesz“”). In recent years, there has been an increased interest in
methods that can predict the retention index by means of models based on the
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quantitative structure-activity relationships (QSAR)"'*. There are advantages in
this approach: there are no costly experiments involved and results are obtained
faster. For example, Sutter er al.'* calculated six molecular descriptors of 150
alkyl benzene compounds and related them to their respective retention indices
using a statistics based model. Soler e al."® established two statistical models,
one of which related the retention properties of a series of benzodiazepines to
their molecular connecti\kity indices. They discriminated between the models
using the correlation coefficient, the standard error and Fisher’s test. F. Vilma et
al.'® correlated the retention indices of linear alkyl benzene isomers with
connectivity indices. They employed a multiple linear regression method and
discriminated between rival models by means of the correlation coefficient and
Fischer’s test. :

Yan et al.'” are among the few workers who employed neural networks to
predict retention indices. They worked on a series of alkyl benzenes on
carbowax-20M and employed an extended delta-bar-delta back propagation
tearning algorithm. The bulk of publications involving neural networks attempted
to predict properties other than retention indices.

The objective of this work is to apply rigorous model discrimination criteria
on models and apply the most recent neural network algorithm to predict retention
indices of a series of acrylates and corresponding propionates and haloproprio-
nates. The merits and shortcomings of each method will then be discussed.

EXPERIMENTAL
Data set :

In this study the retention indices of 63 acrylates selected from literature'®
served as an example o build QSAR models using multi-linear regression,
stepwise, and neural network methods. In the original paper'®, the retention
behaviour of 86 acrylates with various substituents at different positions have
been examined iSothermaIiy on 5 different capillary columns. Among the 86
acrylaies only 63 analogs which had the values of their retention indices for all
the columns have been selected for this study (Table-1). Because no structural
variables were available in the original paper, the 9 structural descriptors used in
this work should be determined above all (Table-2). This work was performed on
a Pentium-III personnel computer nsing programs written by ourselves. The basic
operation of the back-propagation neural network program was performed using
Matlab software. ’

The 63 groups of data set were randomly divided into three sets: a training set
- (40 members), validation set (IO members) and a testing set (13 members).
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TABLE-1
RETENTION INDICES OF C1—C¢ n-ALKYL AND C3-Co ISOALKYL ACRYLATES AND
THE CORRESPONDING PROPIONATES AND HALOPROPIONATES ON SQUALANE,

e

OV-101, SE-54, UCON LB-550-X, AND SP-1000 PHASES AT 100°C

Squalane  OV-101 SE-54 U(;?gtl;(LB ~ SP-1000
Esters ~ ,
I I I3 Iy Is
Acrylates: ;
Methyl* 596.5 596.7 603.9 719.5 940.0
Ethyl 654.0 675.7 700.0 793.2 992.1
Propyl 733.2 775.0 797.2 884.6 1078.3
Butylt 835.2 875.2 895.1 983.3 1175.2
Pentyl 934.8 ~974.8 9949 1082.7 12729
Hexyl 1033.6 1075.2 1095.3 1181.6 1370.3
Isopropyl* 684.4 722.5 739.3 820.9 995.9
Isobutyl 794.5 8355 854.7 936.0 1113.8
Isopentyl 899.8 9390 958.8 1041.7 12232
Isohexyl+t 992.7 10354 1054.5 1132.8 1311.4
Propionates, X = Hy: ; ‘
Methy! 611.0 ~615.0 628.7 715.3 904.6
Ethyl 669.0 S 6949 708.3 786.2 954.4
Propyl* 748.1 794.1 807.2 880.1 1041.7
Butyl §41.9 §92.2 905.5 979.0 11383
Pentyi 9443 989.5 1005.4 1078.2 1236.1
Hexyi 1042.3 1086.5 11051 1176.9 13326
Isopropylt 0688.1 7394 . 750.2 §14.0 956.0
Isobutyl 807.5 854.3 866.4 932.8 1079.2
Isopentyl* 910.8 - 954.6 968.2 1037.2 1186.4
2-Chioropropionates, X = 2-CI-3H:
Methyl 711.3 - 766.1 7932 9222 1197.8
fithyl 789.3 8478 873.7 978.8 1226.5
Propyi* 878.2 932.1 958.5 1067.7 13039
Butyl 975.3 1029.0 1055.2 1161.9 1390.6
Pentyl 1672.7 11264 1152.9 1257.5 1483.5
Hexylt 11722 12251 1252.1 1356.2 1577.4
Isopropyl 820.5 875.6 899.0 997.1 1216.5
Isobutyl* 937.2 989.1 1014.2 1114.0 13359
Isopentyl 1039.5 10900 11169 1218.1 14406
3 -Chloropropionates, X = 3-CI-2H:
Methylt 770.0 823.0 855.2 1007.7 1331.7
Ethyl 846.7 9014 9309 1071.5 13716
Propyl 944.4 1000.1 1029.6 1164,0 1454.2
Buyl 1042.7 1098.3 1127.8 1260.3 15445
Pentyl* 1140.7 1195.8 1226,6 1358.3 1638.7
Hexyl 12393 1294.3 1326.1 1456.7 17347
Isopropyltt 888.2 -945.0 971.5 1095.9 1366.2
Isobutyl 1004.7 1059.6 1088.0 1213.0 1488.7

Isopentyl* 1105.6 1160.1 - -1189.6 1316.8 15916
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~ "UCON-LB-
Esters Squalane OV-101 .~ . 'SE-54 550-X SP-1000
Ly I B < Iy s
2.3-Dichloropropionates, X = Cly:
Methyl 869.1 923.6 960.1 1130.8 1490.7
Ethyl* 940.8 994.5 1028.0 . - 11825 1512.1
Propyl 1036.1 10887 11226 1269.6 15854
Butyl 1131.5 11837 12184 1361.4 1669.0
Pentylt 1227.5 1279.8 1314.4 1457.3 1761.4
Isopropyl 977.2 1032.0 10554 1198.6 1494.1
Isobutyl 10959 1145.3 -1176.4 1315.5 1614.8
Isopentyl* 1193.0 12430 - 12753 1414.6 1713.7-
2-Bromopropionates, X = 2-Br-3-H:
Methyl 788.3 8378 8683 . 1000.0 1299.7
Ethyl 858.1 909.1 937.4 1056.1 13269
Propy! 953.5 1004.6 1032.6 11458 1405.3
Butyl 1050.4 1101.7 ©1129.2 1239.7 1493.3
Pentylt 1146.6 1198.5 -1226.0 1335.7 1583.5
Hexyl* 12458 1298.1 13257 1435.2 1681.1
Isopropyl 896.4 9474 9722 10753 1316.4
Isobuty}* 1016.3 10628 1088.5 1192.6 14383
Isopentylt 1115.1 1162.9 1188.7 12922 15396
3-Bromopropionares, X=3-Br-2-H: :
Methyl* 852.4 901.7 937.1 1099.7 14352
Ethyl 928.3 978.5 1012.7 1160.0 14742
Propyl 10269 1076.9 1110.9 12513+ 15538
Butyl 1126.0 11753 1209.2 1346.9 1645.5
Pentyl 1223.7 1273.0 - 1307.3 14449 1739.7
Isopropyl 970.0 1021.1 1051.8 1183.6 14655
Isobutyl 1087.4 11355 1168.0 1300.0 1586.0
Isopentyl 1188.9 12359 1269.1 1396.7 1687.1
Isohexylt 1281.6 13304 1363.4 1493.0 1776.0

*Test compounds, TValidation compounds.
Topological indices

‘Nine topological indices for each component ‘were computed using a computer
program developed by our team of workers. These topological indices are as
follows: Wiener, Zagreb, Balaban, Shultz, Harary, Randic (of orders 1 to 4).
Table-2 shows these indices.

Statitical models

Multiple linear regression with a variant method called stepwise regression
have been employed to establish predictive models for retention indices for the
compounds cited above. ‘ ‘
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TABLE-2
TOPOLOGICAL INDICES OF C;—C¢ n-ALKYL AND C3-Cq ISOALKYL ACRYLATES
AND THE CORRESPONDING PROPIONATES AND HALOPROPIONATES

Topologic indices
Wiener Balaban Harary ~Shultz  Zagreb TRandicl Randic2 Randic3 Randic4
W ] H  MTI z y! x? x o

Compds.

Acrylates: ; ;

Methyl ~ 22.375 3.746 35239 60719 11.031 3974 3.179 2847 0.691
Ethyl 38.000 3.703 36.990 108.641 14.531 4.428 3543 2.809  1.269
Propyl 60.625 3.581 38610 180313 1i8.531 4914 3911 3098  1.307
~ Butyl 91.250 3.463 40.195 - 279.234 22,531 5414 4254 3358 1511
Pentyl  130.875 3.367 41.769 409.406 26.531 5914  4.608 3.600  1.695
11exyl 180.500 3.292 43.340 574.828 30531 6.414 4961 3850  1.867
lsopropyl 55.625 3.953 38992 164.563 20.031 4.763 4407 2877 1 663
Isobutyl 85.250 3.727 40480 259.984 24531 5264 4752 3303 1.376
Isopentyl 123.875 3.564 42.029 386.156 28.531 5770  5.078 3544  1.656
[sohexyl 172.500 3.445 43593 547578 32531 6270 5436 3.775  1.827
Propionates, X = Hy:

Methyl 24875 3425 31.842 77.469 13531 3451 2720 2161  0.423
Ethyl 41.000 3.477 33581 130641 17.031 3906 "3.085 2145 1.050
Propyl 64.125 3422 35194 208563 2i.031 4392 3452 2435  1.100
Butyl 95.250 3.347 36.774 314734 25031 4.892 3795 2694  1.305
Pentyl 135375 3.279 38346 453.156 29.031 5392 4.149 2937  1.489
Hexyl 185.500 3.223 39916 627.828 33.031 5.892 4502 3.187  1.661
Isopropyl 59.125 3.763 35569 ~ 191.813 22531 4.240 3949 2222 1.454
Isobutyl  89.250 3.594 37.057 249484 27.031 4741 4293 2639 1.176
Isopentyl 128375 3.466 38.605 428906 31.031 5247 4620 2880 1450
2-Chloropropionates, X = 2-C1-3H:

Methyl 34941 4.084 42.840 105.044 16.068 4.010 3705 2955 0.781
Ethyl 54919 4026 44.647 170010 19568 4.465 4.069 2.95] 1.262
Propyl 82.807 3.885 46302 263.079 23.568 4950 4437 3240 1.320
Butyl 119.875 3.741 47912 387751 27.568 5450 4780 3.500  1.524
Pentyl  166.853 3.615 49.504 548.026 31.568 5950 5134 3743  1.708
Hexyl —224.831 3.531 51.091 747904 35568 6450 5487 3993 1.879
. lsoprépyl 76.897 4221 46.703 242976 25.068 4.799 4933 3.032  1.600
Isobutyl 112.875 3.983 48207 346.148 29.568 5300 5278 3.445  1.398
Isopentyl 158.853 3.798 49.771 520423 33.568 5.806 5.605 3.687  1.669
3-Chloropropionates, X = 3-CI-2H: '

Methyl  38.941  3.565 42.097 116000 15362 4212 3260 2.44] 1.207
Ethyl 59919  3.624 43.878 184319 18.862 4.666 3.625 2425  1.854
Propyl  88.897  3.581 45.520 280.741 22.862 5.152 3991 2714  1.905
Butyl 126.875 3.508 47.122 408.766 26.862 5.652 4335 2974 2109
Pentyl  174.853 3.433 48709 572.393 30862 6.152 4.689 3217  2.293
Hexyl  233.831 3.367 50292 775.624 34.862 6.652 5042 3.467  2.465
Isopropyl 82.897  3.870 45909 200.638 24.362 5000 4.489 2502  2.266
Isobutyl 119.875 3.724 47.412 385.163 28.862 5502 4.833 2919 1.980
Isopentyl 166.853 3.600 48.973 544790 32.862 6.008 5160 3.160  2.254

Q) -
A0
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Topologlc mdxces

Wiener Balaban Harary =~ Shultz. - Zagreb Randicl Rand1c2 Randic3 Randic4

‘ j T MTI o Xl XZ X3 Xzs
2,3-Dichloropropionates, X = Cly: S
Methy! 50.713 4.308" '53.439 147942 17.898 4.778  4.111 3.773 1.503
Ethyl 75.544 4253 55287 228055 21.398 5233 4.476 3.769  2.004
Propyl  109.375 4.114 56972 339.624 25398 5.719 4.843 4.058 2.061
Butyl 153.206 3.962 58.603 486.149 29.398 6.219 518 4.318  2.265
Pentyl  208.037 3.823 60212 671.630 -33.398 6.719 5540 4.561  2.449
Isopropyl 102.375 4.413 57.386 316.168 26.898 5.568 5340 3.850 2.355
Isobutyl 145206 4.183 - 58.906 - 459.193 31.398 - 6.068 5.684 4263 2.139
Isopentyl 199.037 3.992 60484 640.674 35398 6575 6.011 4505 2.410
2-Bromopropionates, X = 2-Br-3-H: -
Methyl 33.943 - 4.198 68.885 100.339 15.246 4.082 3.805 3.045 0.813
Ethyl 53739 4.108 - 70.698 . 164.125 18.746 4.536 4.170 3.035 0.294
Propyl 81.536 3.944 72356 255832 22746 5022 4537 3325 0.348
Butyl 118332 3.784 73.680 -378.961 26746 ~5.522 4880 3.584  0.552
Pentyl  165.129 3.648 75.562  537.512 - 30.746  6.022 = 5234 3.827 0.736
Hexyl 222925 3.538 77.149 - 735484 34.746° 6.522 5588 4.077  0.908
Isopropyl 75.53¢  4.290 72760 235911 24246 4.871 _5.034  3.1415  .0640
Isobutyl 111.332 4.032 74.2065 355540 .28.746 5372 5379 3530 1425
Isopentyl 157.129  3.834 75829 . 510090 32.746 5878 5705 3771 1.697
-3-Bromopropionates, X = 3-Br-2-H: k
Methy! 37.943 3.645 67.885 110932 14.903 4.321 3336 2.535 1.297
Ethyl 58739 3.685 69.669 177.889. 18403 4.776  3.701 2.519 1.935
Propyl 87.536 3.627 71313 272.768 22403 5262 4068 2.808 1.986
Butyl 125332 3.543 72916 399.069 26403 5762 4412 3.068  2.190
Pentyl  173.129 3460 74504 560.79] 30403 6262 4765 3.311 2.374
Isopropyl 81.536 3.923 71.703 = 252.847 23.903 5.111 ~ 4.565 2.596  2.343
Isobutyl 118332 3.763 73.207 375647 28403 5611 4910 3.013  2.061
Isopentyl 165.129  3.630 74.769 533369 32403 6.118 = 5236 3255  2.335
lisohexyl 222.925 3.523 76.343 730512 36403 - 6.618 5594 3485  2.500

Compds.

The general form of the model is:
I, = by + b; * Wiener + b, * Zagreb + by * Harary + by * Shultz
+ bs * Balaban + bg * %' 4+ by % 3?4 bg * % + by * y* (1)

where i refers to the retention index corresponding to each column in Table-1.
The b’s are the coefficients estimated by linear regression and the y’s are
the.Randic indices (of orders 1 to 4). The model coefficients and the asso-
ciated statistics were obtained by means of the statnstlcal software STUDENT
SYSTAT".

+ Artificial Neural Network ‘Modeﬁ

There has been an “explosion” of application of neural networks to areas
relevant to chermcal engineers. Neural networks have been used for a wide variety
of purposes“"“ Most of the articles published on the subject concentrate on
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applying neural networks in novel ways to solve important problems. Their
application in QSAR analysis has been explored widely since 1990234, Our goal
in this paper is to concentrate more on the application of neural net models (NNM)
to predict retention indices in gas chromatography and less on their properties.

Excellent reviews of artificial networks are available™. Artificial neural
networks are composed of many simple computational elements (nodes) locally
interacting across very low bandwidth channels (connections). The architecture
of these models is specified by the node characteristics, network topology and
learning algorithm. Nodes in artificial neural networks are very simple processors
inspired by their biological counterparts.

An artificial neural network provides a nonlinear mapping between some nput
(or independent) and output (or dependent) variables. The mapping is performed
by use of processing elements (PE) and connection weights.

The development of the neural network involves the construction of the
network of PEs (number of layers, number of elements in each layer), the
connectivity between the layers and the strength of each connection. Due to the
uncertainty concerning the true number of independent components, the number
of hidden elements is usually adjusted to give the best model fit to the database.

Several ANN topologies*®® have been proposed. Each differs in the number
and character of the processing nodes, the connections, the training procedures
and whether the. input-output values are continuous or discrete. The nestwork
topology chosen for this work is specified by a multi-layer feed-forward neural
network. This choice was based on the relatively well-established training
behaviour of this type of neural network: Feed-forward neural networks are
networks that transfer information in the forward direction from input o output
without feedback. For such networks, the connection weights are determined by
training the neural network model with process data by adjusting the weights in
an order fashion to minimize the deviation of the predicted outputs from data
outputs. This process is called back propagation.

RESULTS AND DISCUSSION

The statistical treatment of the multi-linear regression models incorporating
all topological indices® showed that the models were not significant at the 95%
level. Although the Fisher’s coefficient, F, is very meaningful for the 5 columns,
due to the no significance of the majority of the coefficients of all the models,
multi-linear regression models have been rejected. This was based on the
Student’s test which showed that some independent variables in the models have
no significance. The no significance of coefficients of obtained models has also
been confirmed by the values of tolerance that is the parameter that indicates the
redundancy of each variable relative to the other independent variables. The

- registered value is one less than the square of the multiple correlfation between
‘‘one variable and the other ones. It is the fraction of its variability that is not

explained by the other variables. A tolerance less than 0.1 is problematic. When
it is less than 0.01 it indicates that variables are identical and that a variable can
be predicted by the other ones which means-that data are collinear. This evidence

i
Lo
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was already foreseeable to the seen of correlation matrixes that showed that some
independent variables are greatly correlated (r = 0.999). Even though the F report
is very meaningful, in this case the coefficients of regression can have high
standard errors that can make them become no significant from a statistical point
of view. In other terms, there is a paradox: the F report indicates that coefficients
are not all equal to zero, but none of these coefficients is meaningfully different
from zero. Because of the colinearity of predictors, their coefficients are not
meaningful and therefore one can Suppress any redundant predictor without taking
off a lot of explanatory power to the model. However, when a term is suppressed,
itis necessary to know that the behaviour of variables changes and the other terms
can become meaningful®. ; ,

Since multi-linear regression models had been réjected essentially because of
the number of independent variables in the models®®, we used the strategy of
reduction of the number of predictors step by step by the stepwise method; the
algorithm (SYSTAT) chooses the predictor that has the most elevated correlation
with the dependent variable (retention index), then it examines every other
predictor to sec the one that, combined with the first predictor, gives the smallest
~value of the residual sum-of-squares. This process is reiterated; however, to every
stage, it tests the significance of the predictor newly introduced and does not add
it to the model 1f it is not meaningtul to the level 5%. It also refuses to integrate
a variable te the mode! if tolerance is too weak even though this one is meaningful
to the level 5%. ‘ ' :

The mathematical forms and the statistical parameters of the models obtained
with the stepwise method are:

{a) For Squalane:

1=389.310+ 86.345 x* + 0.599 MTI + 3.916 H
n=40, R=0983, s=29.693, F=351.59
(b) For OV-101: Y
1= 430,468 + 94.995 * 1 0,581 MTI + 3.829 H
n=40, R=0972, $=39262, F=201.922
(c) For SE-54: SR |
I=418.502 + 101.690 %'* + 0.589 MTI + 4.333 1
n=40, R=0978, s=36577, F=257.781
(d) For UCON-LB-550-X: G
1= 4185024 101,690 * 4 0.58 MTI + 4333 0
h n=40, R=0963, s5=50601, F=154423
“(¢) For SP-1000: o
 1=547.990+210.006 x* + 0.352 MTI + 6.754 H
n=40, R=0930, s=83.791, F=76.664
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The models obtained are statistically significant above the 5% level. The
stepwise methods gives us meaningful models to a level. In order to assess the
predictive power of the above models, the deviation between the experimental
and the predicted retention indices has been calculated and is presented in Table-3.

TABLE-3
CALCULATED VALUES OF RETENTION INDICES (I) OF TEST COMPOUNDS
AND THEIR RESIDUES & =|I¢ ~ leyp |= FOR THE DIFFERENT

COLUMNS USING THE STEPWISE METHOD

Squalane 0OV-101 SE-54 UCON-LB-550-X SP-1000

L 3 L & L 8 I ) L S

623.341  26.841 660.317 69.617 - 677.224 73324  762.530 43.030  952.481 12481
784.168  99.768  833.356 110.856  853.492 114.192  y/).3us 149.408 1218.5306 222.606
834.523 7.377  878.104 14.096 895927 9573 985514  6.514 1181.000 42.700
922.602  11.802  965.224 10.624  985.854 17.654 1073.084 35.884 1264.211 77.811
842.188  36.012  886.000 46.100 908313 50.187 1008.887 58.813 1230.326 73.374
906.142  31.058 948967 40.133 973427 40.773 1071.606 42.392 1289012 46.888
1120906 19.194  1167.359 28441 1199.873  26.727 1314.671 43.629 1559.927 78.773
1102.039 3.561  1148.627 11.473 1180792 8808 1296.474 20.326 1543.874 47.726
915454 25346 965.032 29.468 . 996.172 31.828 1131.748 50.752 1567.767 55.667
1218020 25.020 12063.231 20.231 1303.009 27.709 1424.599 19999 1688.129 25.571
1296726 50.926 1334.438 36.338 1380.013 54.313 1485.714 50.514 1705.099 24.000
1016.142 0.158  1056.765  6.035 1094.610° 6.110 - 1210.252 17.652 1473.983 35.683
837.501 14.899  878.060 23.640 909878 27.222 1035964 63.736 1317.910 117.290

&= I Ie— Iexp !

Inspecting the deviation values in Table-3, one can see that the values can
exceed 99.768 i.u. for squalane, 110.876 1.u. for OV-101, 114.192 i.u. for SE-54,
149.408 i.u. for UCON-LB-550-X and 222.060 i.u. for SP-1000. Therefore these
models are not precise for the prediction of retention indices. Besides. this has
been confirmed by the statistical study of the simple linear regression between
experimental retention indices, I, and calculated ones, I, for reference com-
pounds as well as test compounds. The results of the test compounds are presented
in Table-4.

TABLE-4
LINEAR REGRESSION I =bg + by Iexy FOR TEST COMPOUNDS
USING STEPWISE METHOD

- Column be b T F S
Squalane 36.709 0.968 - 0.980 268.123 38.978
OV-101 93.471 0.910 0.975 207517 43911
' SE-54 87.008 0.922 0.972 188.652 48.096
UCON-LB-550-X 120415 0.896 0.962 137650 57.567

SP-1000 248.188 -0.824 0.941 85.531 78.884
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Each of the models leads to correlation coefficients lower than 0.99 and to
elevated standard errors. We conclude that models obtained by the stepwise method
are meaningful, but are not precise enough for the prediction of the retention indices
ofourcompounds. '

In order to refine our precision, we used a new method used to solve complex
cases of optimization, neural networks. It uses techniques based on the working of
biological neurons for data prediction and classification.

The neural network used in our work can be presented as follows:

The database using the input parameters given in Table- 1 was randomly split into
three sets: a training set including 40 compounds of the data, the validation set
including 10 compounds and the test set including the remaining 13 compounds.

The neural network software was used to scale the input data over the interval
[-1 — +1], and to initialize the network weight using a tansigmoide function.

In order to determine the optimal number of hidden layer nodes, neural networks
with different numbers of hidden layer nodes were trained. The number of hidden
layer nodes was varied from three to fifteen. According to its generalization ability
on the validation sets, we calculated the root-mean-square (RMS) error on different
numbers of the hidden layer nodes and the lowest was picked as the optimal neural
network model.

It is a multi-layer back propagation network with 3 layers (input-hidden layer—
output). The number of neurons in the hidden layer is: 5 for squalane, 7 for OV-101,
3 for SE-54, 8 for UCON-LB-550-X and 3 for SP-1000. The network includes-

® An input layer that contains the nine descriptors.

¢ A hidden layer of several neurons.

® An output layer that contains the variables (retention indices).

A schematic diagram of the ANN is shown in Fig. 1, where the circles are
nodes and the connections represent weights that describe the importance of the

signal being transmitted along a given path. The neural network models were
obtained using MATLARB.

Zagreb
Wiener
Harary

Shultz
Balabén
Randict

Randic2

Randic3

Randic4
Topological indices
Input layer ' . - Hidden layer Output layer

Fig. 1. Neural network diagram employed for the prediction of retention indices
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To train the network we used the LEVENBERG MARQUARDT algorithm
(Trainim)®. The number of iterations has been fixed to 10.000 and the precision
to 10712, e

The choice of reference and test compounds is the same that for the two
previous methods.

To test the validity of the model found, we compared the experimental results
of the training compounds in the first place to those obtained by the models.
Values of calculated retention indices for reference compounds are identical to
their observed values (8 = 10_12) indicating that the training was successful. We
did the same comparisons for test compounds (Table 3) and the found differences
were very low.

Even the study of the lmeal regression between calculated and experimental
retention indices for test compounds leads to values of correlation coefficient
higher than 0.998 and to low standard errors. Table-6 and Fig. 2 show the
goodness-of-fit results for the optimal neural network models (NNM).

TABLE-5
CALCULATED VALUES OF RETENTION INDICES (I.) OF TEST COMPQUNDS
AND THEIR RESIDUES (8 =1, — L«p) FOR THE DIFFERENT
COLUMNS USING NEURAL NETWORK

Squalane OV-101 SE-54 ) UCON-LB-550-X SP-1000

L 8 Ie 3 I ) L S L )

597400 G900 609,500 12.800 627.600 23.700 7257700 6.200 931.300  8.700
682,100 23400 705.700 16.800 742:900 3.600 823.300  2.400 997700 1.800
839.000 2806 891.300 0900 909.700  4.200 977.700  1.300 1133900 4400
913.900 31e0 237.000 17.600 964.200  4.000 1046.400  9.200 1185.100  1.300
878.400  0.200 938.700 -6.600 960.406° 1900  1070.400 2.700 1304.000  0.100
936.700  0.500 9838.800  0.300 998.600 15.600 1119.000  5.000 1361.700 25.800
1157.480 16700 1198.700 2,900 1232.500 5.900 1354.100  4.200 1642.000  3.300
1116.800  11.200 1161.100  1.000 1186.400 3 .200 1324.300  7.500 1595.300  3.900
940.600 0.200 994.900 0.400 1024.600 - 3.400 1183.400 0.900 1503.700 8.400
1194.600  1.600 1248.000  5.000 1264.800 10.500 1426.300 11.700 1716.000  2.300
1237100 8.700 1294.800  3.300 1314.100 11.600 1409.700 25.500 1627.200 53.900
1018.000  1.700 1058.700  4.100 1081.700  0.800 1179.600 13.000 1431.000  7.300
829.200  23.200 875.600 26.100 926.400 10.700 1091.600 8.100 1441.500  6.300

" TABLE-6
LINEAR REGRESSION 1. = by + b1 exp FOR TEST COMPOUNDS
' USING NEURAL NETWORK

Column by b, r F S

Squalane ~12.397 1.613 0.999 5033.017 9.418
OV-101 -8.932 1006 0.999 3833.719 11.293
SE-54 30412 0968 T 0.999 7113.637 8.224
UCON-LB-550-X  16.860 0.985 0.999 5397.270 10.103

SP-1000 . 17.585 -0.985 0.998 2343.209 17.997
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(@)
. Fig. 2. Parity plots showing the goodness-offit for all the columns: (1) Squalane: (b) OV-101;
! (c) SE-54; (d) UCON-LB-550-X; (e) SP-1000

The retention indicesy clearly predicted by the ANN model are closer o the
corresponding experimental values. This demonstrates the superiority of the ANN
model in predicting the retention indices of our compounds.
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Conclusion

The key results of this work suggest that a neural network model is capable
of prov1dmg reasonable estlmates of the retention 1nd1ces The NNM cannot
indices influencing the retentlon indices is the most important. However, it does
provide a fast and accurate method for correlating retention indices to topological
indices. k

In this paper we have presented an example of QSAR model built by neural
network method which is a powerful tool to predict chromatographic parameters.
Comparing the results from stepwise method with those from neural network
analysis, they are consistent in the relationships of retention indices with
descriptors, but the results of neural network are much better. Rule-following
behaviour occurred without any explicit representation of rules due to the
spontaneous generalization, thereby allowing the network to classify similar input
patterns not used to train the network. In conclusion, we have demonstrated that
an artificial neural network (ANN) can predict successfully retention indices in
gas chromatographyv.
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