Influence of Dielectric Constants on Complex Equilibria of Cu(II)-Salicylic Acid Complexes in Different Percentages of Methanol-Water Mixtures

K.T. KIRNAPURE* and B.G. KHOBRAGADE†

Department of Chemistry

Mahatma Gandhi College, Armori-441 208, India

The interaction between Cu(II) and salicylic acid in different percentages of methanol-water mixtures at 0.1 M ionic strength has been studied pH-metrically at the temperature $29 \pm 0.1^{\circ}$ C. The data are used to study the values of proton-ligand and metal-ligand stability constants for 1:1 and 1:2 complexes. In the present investigation, the effect of dielectric constants on stability constants of complex equilibria is studied.

Key Words: Influence, Dielectric constants, Cu(II), Complexes, Salicylic acid.

INTRODUCTION

Shelke et al. have studied equilibrium constants of UO₂(II) and Cu(II) ions with dicarboxylic acid in dioxane-water mixtures. Metal-ligand stability constants of dicarboxylic acids (succinic acid, itaconic acid, adipic acid, etc.) with transition metal ions have been determined in aqueous medium by many workers². Protonligand and metal-ligand stability constants of Th(IV) with some substituted pyrazolines have been investigated by Gudadhe et al.3 Narwade et al.4 have investigated the interaction of Fe(III) with substituted chalcones at 0.1 M ionic strength pH-metrically. The metal-ligand stability constants with 1,3-diketone substituted pyrazoles and pyrazolines have been studied by Sawalakhe et al.5 spectrophotometrically. The interaction between Cu(II) chelates with 2-hydroxy aromatic ketones and alkalyl mono-amines is studied by Rabindranath⁶. Mandakmare et al.7 have determined the stability constants of UO2(II) complexes with some substituted coumarins by potentiometric and spectrophotometric techniques. Influence of dielectric constant on complex equlibria of Cu(II) o-amino-sulphonic acid complexes in different percentages of methanol-water mixtures have been studied by Sondawale et al.8

The study of the effect of dielectric constants of methanol-water media on Cu(II)-salicylic acid was still lacking. In view of analytical applications, it is of interest to know the physico-chemical properties of metal-ion complexes and the effect of dielectric constants on metal ion complexes of methanol-water mixtures. Therefore, the present work has been undertaken to make a systematic study of Cu(II) complexes with salicylic acid.

[†]Government Vidarbha Institute of Science and Humanities, Amaravati, India.

EXPERIMENTAL

All the chemicals such as sodium hydroxide, sodium perchlorate, perchloric acid, methanol, Cu(NO₃)₂ and salicylic acid were of AnalaR grade. Salicylic acid used was crystallized and its purity was checked before use. A solution of salicylic acid was prepared in aqueous medium by dissolving an approximate amount of it. The solution of Cu(NO₃)₂ was prepared in water and its concentration was checked by EDTA.

An Equiptronics model EQ-610 digital pH-meter was used in the present investigation for measuring the pH of the solution. It was calibrated by standard buffer solutions of pH 4.01, 7.00 and 9.12. By using Calvin-Bjerrum titration technique in an inert atmosphere, pH-metric titrations were carried out.

The experimental procedure involved pH-metric titrations of carbonate-free solutions of:

- 1. Free $HClO_4$ (1.000 × 10^{-2} M),
- 2. Free $HClO_4$ (1.000 × 10^{-2} M) + ligand (20.000 × 10^{-4} M), and
- 3. Free $HClO_4$ (1.000 × 10^{-2} M) + ligand (20.000 × 10^{-4} M) + metal (4.00 × 10^{-4} M against standard solution of sodium hydroxide (0.2 M) at temperature 29 ± 1°C.

The ionic strength of 0.1 M was maintained by adding an approximate amount of 0.1 M NaClO₄ solution. The same procedure was used for 10, 20, 30, 40, ... % of methanol-water mixtures. pH values were corrected by the use of Van-Vilart and Haas equation⁹.

RESULTS AND DISCUSSION

Proton-ligand formation constants

The deviation of (acid + ligand curves) started around pH 2.6 from the acid curve and increases continuously up to pH 10.5. The average number of proton associated with ligand (\overline{n}_A) was determined by the Irving-Rossotti's equation ¹⁰. The formation curves were constructed by plotting values of \overline{n}_A against pH of the system in all the percentage of methanol-water mixtures. The values pK_{COOH} (dissociation constants) were estimated by noting the pH at which $\overline{n}_A = 0.5$ and accurate values were also determined by pointwise calculations. The pK_{COOH} of salicylic acid in all the percentages of methanol-water are presented in Table-1. It could be seen from Table-1 that pK_{COOH} values increased with increase in the percentage of methanol-water mixture.

TABLE-1
PROTON LIGAND STABILITY CONSTANTS OF SALICYLIC ACID IN DIFFERENT
PERCENTAGES OF METHANOL-WATER MIXTURES OF 0.1 M IONIC STRENGTH

% of methanol- water mixture	Dielectric constant (D)	1 <i>/</i> D	Mole fraction	рК _{СООН}	
10	75.00	0.0133	0.010		
20	70.10	0.0142	0.050	5.38	
30	60.80	0.0164	0.160	6.30	
40	60.20	0.0166	0.205	7.10	
50	52.50	0.0190	0.435	7.95	
60	50.20	0.0199	0.452	8.80	
70	40.80	0.0245	0.490	9.55	
80	40.10	0.0249	0.566	10.40	

The precision of experimentally determined pk values

The precession of experimental pK values is examined by determining the pK values of the ligand from two sets of pH-metric titrations. All the experimental conditions except the concentration of the ligand and sodium hydroxide were kept identical for the two sets.

The proton-ligand formation numbers (\overline{n}_A) at various pH values obtained from the two sets are presented in Table-2.

TABLE-2 COMPARISON OF $\Delta \overline{n}_A$ VALUES FOR TWO DIFFERENT SETS IN 30% METHANOL-WATER MIXTURE

рН	Set I	Set II n _A	$\Delta \overline{n}_{A}$	$\sigma = \left[\frac{\Sigma(\Delta \overline{n}_{A})^{2}}{(n-1)}\right]^{1/2}$
2.4	0.7532	0.7535	0.0030	
2.6	0.6918	0.6925	0.0017	
2.8	0.6513	0.6615	0.0002	
3.0	0.6005	0.6009	0.0003	
3.2	1.5905	0.5906	0.0001	
3.4	0.5342	0.5413	0.0071	$\sigma = 0.0032$
3.6	0.5165	0.5008	0.0157	
3.8	0.5005	0.4900	0.0105	
4.0	0.3942	0.3900	0.0042	
4.2	0.1225	0.1265	0.0040	
4.4	0.0910	0.0950	0.0040	

The values of $\Delta \bar{n}_A$ at a particular pH are determined and standard deviation σ of the values calculatated by using the expression

$$\sigma = \left[\frac{\sum (\Delta \overline{n}_A)^2}{(n-1)} \right]^{1/2}$$

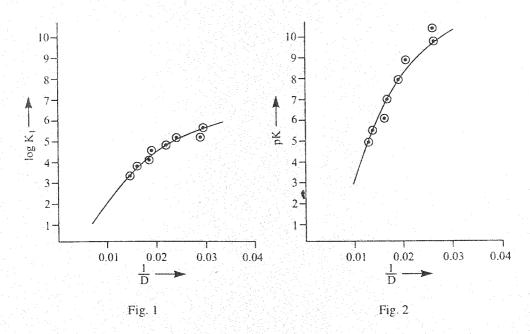
where n is the number of observations.

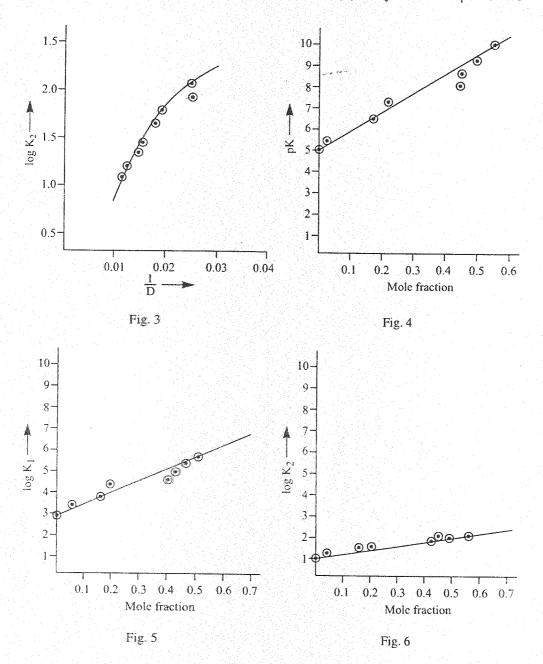
Metal-ligand stability constants

The departure of (free 'acid + ligand + metal ion) curve from (free acid + ligand) curve was obtained around pH 3.5 in all the percentages of methanol-water media. This showed the commencement of complex formation before hydrolysis. The values of \overline{n} (metal-ligand formation number) were calculated by using the Irving-Rossotti's expression¹⁰.

The values of $\log k_1$ (metal-ligand stability constant for 1:1 complex) and $\log k_2$ (metal-ligand stability constant for 1:2 complex) were obtained from the plots of \overline{n} vs. PL by half integral method as well as pointwise calculations in all the percentages of methanol-water mixtures (Table-3). It is observed from Table-3

that $\log k_1$ and $\log k_2$ values increase with increase in the percentage of methanol-water mixture.


This may be due to the effect of the bulk solvent which decreases formation constants but it increases metal-ligand stability constant.


TABLE-3
METAL-LIGAND STABILITY CONSTANTS (log k) OF Cu(II)
COMPLEXES WITH SALICYLIC ACID IN DIFFERENT PERCENTAGES
OF METHANOL-WATER MIXTURES pH-METRICALLY

% of methanol- water mixture	Dielectric constant (D)	1/D	Mole fraction	log k ₁	log k2
10	75.00	0.0133	0.010	2.90	1.15
20	70.10	0.0142	0.050	3.25	1.25
30	60.80	0.0164	0.160	3.60	1.40
40	60.20	0.0166	0.205	4.00	1.50
50	52.50	0.0190	0.435	4.40	1.65
60	50.20	0.0199	0.452	4.75	1.75
70	40.80	0.0245	0.490	5.10	1.90
80	40.10	0.0249	0.566	5.50	2.05

The plots of pK/log k vs. 1/D (D = dielectric constant) and mole fractions

The plot between $pK_{COOH}/log~K~vs.~1/D$ showed fairly good relationship at low percentage of methanol-water mixture and non-linear relationship for higher percentage of methanol-water mixture. The plots between $pK_{COOH}/log~K~vs.$ mole fraction show a linear relationship (Figs. 1–6).

Water is recognized as being a unique structural ligand in the sense of having three-diamensional ice-like framework. Franks and Ives¹¹ have shown the addition of first increment of other organic co-solvency to water. The dielectric constant of the medium is not solely responsible for the extent of dissociation; there is at least an additional factor of chemical role of the solvent in most cases.

ACKNOWLEDGEMENT

The authors are thankful to the Director, M.R. Patil, Government Vidarbha Institute of Science and Humanities, Amaravati, for providing the necessary facilities.

REFERENCES

- 1. D.N. Shelke and P.V. Jahagirdar, *J. Inorg. Nucl. Chem.*, 14, 925 (1979).
- 2. A.E. Martell, Stability constants of metal ion complexes, Special Publication Nos. 17 and 25, Chemical Society, London (1964 and 1971).
- 3. S.K. Gudadhe, M.L. Narwade and S.V. Jamode, Acta Cienc. Indica, 11C, 234 (1985).
- 4. M.L. Narwade, M.M. Chincholkar and S.U. Same, J. Indian Chem. Soc., 62, 194 (1985).
- 5. P.D. Sawalakhe and M.L. Narwade, J. Indian Chem. Soc., 71, 49 (1994).
- 6. Rabindranath and R.P. Bhatnagar, J. Indian Chem. Soc., 63, 463 (1986).
- 7. A.U. Mandakmare and M.L. Narwade, Acta Cienc. Indica, 21C, 30 (1994).
- 8. P. J. Sondawale, A.N. Ambhore and M.L. Narwade, Acta Cienc. Indica, 23C, 37 (1997).
- 9. L.G. Van-Vitart and C.G. Hass, J. Am. Chem. Soc., 75, 541 (1953).
- 10. H.M. Irving and H.S. Rossotti, J. Chem. Soc., 54, 3397 (1953).
- 11. F. Frank and D.S.G. Ives, Quart. Rev., 20, 1 (1966).

(Received: 29 November 2004; Accepted: 6 March 2006)

AJC-4746

BIOMMEDD2006 2nd INTERNATIONAL CONFERENCE ON BIOMATERIALS & MEDICAL DEVICES

NOVEMBER 9 TO 11, 2006

IASI, ROMANIA

Contact:

Conference Manager

Mr. Iulian Antoniac

Street Splaiul Independentei

313, Build J, sector 6, cod 77206, Bucharest

Fax/Tel: ((4)(021)4100201; Mobile: (4)0744369288

E-mail: i_antoniac@yahoo.com