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Voltammetry was used for the simultaneous determination of
cysteine, tyrosine and tryptophan. Each analyte has a distinctive
response at the glassy carbon electrode in a nearly neutral solution.
The main difficulty encountered in their simultaneous determination
is the high degree of overlapping. Extraction of individual analyte
concentration from voltammetric responses was achieved using ar-
tificial neural networks (ANNSs), principal component artificial
neural networks (PC-ANNs), principal component regression and
partial least squares regression methods. The calibration set was
orthogonatly designed in order to obtain maximum information
from the calibration procedure. The calibraiion set was used as
wraning set in artificial neural networks analysis. The different
models were used to predict the concentrations of test set. The root
mean square error of calibration and root mean square error of
prediction were calculated for all models. The results showed that
better prediction was achieved with PC-ANN. The number of hid-
den neurons, learning rate, momentum and the epochs of training
were investigated. The combined technique using cyclic voltam-
metry, PCR and ANN s helpful in the simultaneous detection of
mixtures of oxidizable amino acids.
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w

 INTRODUCTION

Rapid determination of organic compounds in complex samples is frequently
required in chemical, food and pharmaceutical inﬁustries and also in medical and
environmental studies. Although amino acids are readily separated from matrix
interference by using high-performance liquid chromatography (HPLC), their
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detection is hindered in the absence of a strong chromophore and formation of
derivatives is required to enhance the absorbtivity. Indeed, photometric detection
of amino acids after chemical derivatization with o-phthaladehyde'" ninhydrin®
and phenyl isothiocyanate® are very sensitive. Nevertheless, different detection
strategies, without using derivatizing reagents, when available, are generally
preferred for simplicity and economical convenience. Electrochemical detection
following liquid chromatography (LC-ED) represents a very attractive detection
possibility for underivatized amino acids® . ‘Alternatively, several transition
metal-based electrodes have been proposed as amperometric sensors for the
determination of amino acids at a constant applied potentialﬁ'“.

Meanwhile, the sensitivity is lower due to the higher background signal with
electrochemical techniques. In order to improve the sensitivity, selectivity and
reproducibility, some chemically modified electrodes (CMEs) have been used for
the determination of amino acids'* °. However, applicability of CMEs for these
compounds is often limited due to the stability of CMEs and adsorption of
chemicals on the electrodes.

A graphite-methacrylate composite and Pt electrodes have been employed for
the simultaneous determination of cysteine (Cys), tyrosine (Tyr) and tryptophan
(Trp) by voltammetry with PLS and PCR' 3 The interactions of these com-
pounds on electrode surface lead to responses that are not additive. Almost by
using high number of principal components these systems can be modelled by
using principal component regression (PCR) and partial least squares regression
(PLS). It seems that by using non-linear techniques better results may be obtained.
This paper employs two non-linéar techniques, i.e., artificial neural netwaorks
(ANNs) and principal component-ANNs (PC- ANNS) to simultaneous quantifica-
tion of the three analytes m mixtures.

EXPERIMENTAL

- Cysteine, tyrosine, tryporophan and other reagents were of analytical grade
supplied by Merck. Deionized water was used for the preparation of all solutions.
The background electrolyte solution was prepared from potassium chloride. The
buffer solution was prepared from potassium monohydrogen phosphate and
potassium dihydrogen phosphate. The pH of these solutions was adjusted to 7.5.
A glassy carbon disk electrode with 2 mm diameter was used as working
electrode. A platinum wire was employed as counter electrode and a saturated
calomel electrode served as the reference electrode and all potentials in the text
refer to it (all electrodes obtained from Azar Electrode Co., Iran). Voltammograms
were obtained with PGSTAT 20 Autolab poterttiostat from ECO Chemie (The
Netherland). The GPES 'software (version 4. 5) was used for saving voltammo-
grams. Currents were registered at 5 mV intervals. Data of voltammograms were
firstly converted to EXCEL file;, in the next step they moved to MATLAB format.
Neural networks were implemented in Matlab (The Math Works, USA) version
0.1, using the Neural Network Toolbox version 4.0.1. PCR and PLS methods were
available from the PLS_Toolbox'®
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Electrode preparation

Prior to each experiment, the glassy carbon electrode was polished with
0.05 pm alumina in water slurry using a polishing cloth and deionizied water. The
polished electrode was placed in a phosphate buffer solution (pH = 7.5) and the
electrochemical activation of the electrode was performed by continuous potential
cycling from 0.3t00.9 Vatascanrateof 0.1 V s~! until a stable voltammogram was
obtained. This electrode was used for electrochemical methods. This procedure was
repeated for each voltammogram. Meanwhile, polishing renewed the surface of the
electrode.

Multivariate calibrations

The voltammograms were recorded from 0.3 t0 0.9 V with a scan rate of 0.050 V
"', In each experiment, the 15th cycle was recorded. The currents from forward
scan were used as multivariate data for further analysis. The first step in the
simultaneous determination of three analytes by multivariate calibration methods
involves constructing the calibration matrix for the ternary mixture. A calibration
set was prepared by using orthogonal array design method, in order to extract
maximum quantitative information efficiently. Afive level orthogonal array design,
denoted by AO25(53) was selected in this experimem”. Composition of the calibra-
tion set is given in Table-1 and composition of test set is given in Table-2. The
calibration set was used as traing setin ANN analysis.

Although multivariate calibration methods have been extensively described
elsewhere ¥, a brief description is given below.

Artificial Neura!l Networks (ANNs)

ANNs have been utilized to solve a wide variety of problems ranging from
character and voice recognition to modelling and data mapping. Applications of
ANNGs in analytical chemistry include modelling nonlinear calibration curves.
quantitative analysis of multicomponent systems and data reduction or mapping.
ANNs are a parallel computational technique composed of groups of highly
interconnected processing elements called neurons. Neurons are arranged in a
series of layers. The first layer, which is termed the input layer, receives the
experimental information, experimental parameters, topol ogical descriptors, etc. as
input. The last layer is the output layer and its neurons produce the output of the
network. One or multi-layers of neurons between the input and output layers are
called hidden layers. The first step in ANNs is to define the number of neurons inthe
input and output layers based on the characteristics of the system. The number of
neurons in the hidden layer is an adjustable parameter so that it should be optimized.
In the next step, the network is trained using experimental data and, in the final step,
the network is used for prediction. Among different learning methods in neural
network computing, the most popular method is the back-propagation (BP) method
and it is often used in chemical studies. In BP féedforward networks, sigmoidal
transfer function is used in the hidden layer and sigmoidal and/or linear transfer
functions are usually used in the output layer. The mean square error (MSE) is
usually used as a criterion for finalizing the learning process and is computed using
Eg. ().

L e ) | |
MSE = PxM p{’i HE 1 (Opm - Tpm) (1)
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where M is the number of neurons in the output layer and P is the number of
experimants. The most serious problem in BP-ANN is overfitting where the data
points in the training set can be fitted very well (i.e., MSE for training set is very
low), but the prediction for data points other than training set is poor and produces
high prediction error. Therefore, to evaluate the quality of fitting, training and
test sets are used in this work. The MSE from the training set will decrease
monotonously with an increase in the number of epochs in the learning procedure.
The optimizing process of the number of epochs will be finalized when the
prediction error for the test set becomes constant or elevated. Generally, the MSE
for the test set become larger if there is overfitting in the learning procedure. In
this work, the training process is stopped manually when the mean square error
of the test set remains constant after successive epochs.

Prinipar Component Regression (PCR)

Most measurements are not selective for an'analyte of interest in a mixture;
in addition, the data also contain noises. In principal component analysis (PCA),
the measured data are reduced to contain only the information that is relevant to
the system. Its systematic variations are extracted and the information in the many
variables is concentrated into a few underlying (latent) variables called principal
components. The first step in PCR is to decompose the data matrix into an
orthonormal basis set:

Dn, m = Sn.ng m - 2)

where D, , contains the n recorded response as rows, each digitized intorm data
points, S, 4 is the score matrix which relates to samples composition, Ly g, in
which T denotes transpose, is the loading matrix and q is the least of n and m,
which usually is n. The second step in PCR is to separate the eigen vectors that
account for the systematic variation from those correqponding to noise:

Dﬂ m Sl] rL;I m + Eﬂ m D + En m (3)

where D is the predicted data matrix, En m is the residual matrix and r is the
number of significant components. It corresponds to the number of compounds
that contribute significantly to the measured voltammograms. The third step in
PCR is to correlate score matrix S with the concentration matrix C using the
following expression: '

’ Cn 1= Sn qu 1+ Fn ! 8 (4)

where B is the matrix of regression coefficients which is resolved by using a least
square procedure and [ is the number of components in the mixture. F,, ; is the
residual matrix of concentration matrix. The fin4l step in PCR is to predict the
concentration of unknown samples from the following equations:

Sunk =Dy L - (5)
and

’Cunk SunkB ) (6)

where the subscript unk refers to the unknown samples.
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Principal component-Artificial neural networks

Reducing the number of inputs to a network reduces the training time,
repetition and redundancy in the input data and’'so potentially giving a more
accurate network. Principal component analysis is often used to reduce the large
number of data to too much smaller PCs. In this work, scores were used as
network inputs instead of original data.

Partial least square (PLS)

Partial least square regression can be employed as an alternative to PCR. The
PLS method is carried out by decomposition of the data matrix D™™ and
concentration matrix C, .

Dy m=SnqLa m+ En m 7)
Cn, 1= Un, popl;, 1t Fn, 1 (8)

where n, m, q, 1, S, LT discussed later and U denotes the composition score matrix
with n rows and p columns and O stands for the p x [ loading matrix.
The relationship between scores and concentration is obtained from

C=SBU'+F 9)

where B is the matrix of the regression coefficient obtained by a least square
procedure. Once the model is built, it can be used to predict the concentration of
unknown samples.

[_eave-one-out cross-validation method was used to select the number of latent
variables to be used in PCR and PLS. The optimum number of latent variables
was chosen when a minimum value of PRESS function calculated using the
following expression is achieved:

‘ Samples A
PRESS(K) = 21 @, -G &) (10)
. 1=
where k refers to the number of latent varjgbles considered C; is the real
concentration of analyte in the sample i and C;_ is the calculated concentration
by multivariate calibration methods using k factors.

The relative performance of different models was evaluated by the parameters
root mean square error of calibration (RMSEC) and root mean square error of
prediction (RMSEP) which were calculated using the following expressions:

12
% (Cexpear = Cear)”
RMSEC = 100 x| = Cepa ( ) -
z (CQCal)
SA(C C 5 172
RMSEP = 100 x (Cexppre = - pie) (1)
)y (Cprc)

where Ceypew and Cgy are the experimental and predicted concentrations for
calibration set, Ceyp pre and Cye are the experimental and predicted concentrations
for test set, respectively.



2450 Majidi ef al. k P Asian J. Chem.

RESULTS AND DISCUSSION
First experimental studies indicate that repeated voltammograms shows a
decrease in the current intensity from scan to scan and after approximately 10
successive cycles, a steady state was attained. From this point, the cyclic voltam-
mograms were highly reproducible from cycle to cycle. Therefore the cyclic
voltammograms of each particular sample were taken after 15 cycles in order to
ensure the reproducibility of data. The individual voltammograms obtained for

three analytes were shown in Fig. 1. The precision of measurements was studied
14
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Fig. 1. Cyclic voltammograms of Cys, Tyr, Trp in 0.1 M KCl and phosphate buffer 0.1 M (pH
= 7.5). (Concentrations of amino acids were 107 M)

with 5 replicates of 107*M for each ana]yte The relative standard deviations for E,,
and i, were 1.3 and 4.7% for Cys, 1.5 and 8.7% for Tyr and 1.3 and 1.6% for Trp,
xu,peuwc y, which were sufficient for these kinds of measurements. Fig. 2 shows
cyclic voltammograms of amino acid solutions at different concentrations from
7.80 to 122.2 uM in 0.1 M KCl and phosphate buffer (pH = 7.5). As shown in Fig.
1, the voltammograms were highly overlapped and a selective potential is not able
to determine such amino acids by using classical univariate calibration. The
additivity of the cyclic voltammograms was investigated from the study of various
- mixtures of amino acids. The results showed that the voltammogram of the mixture
(Fig. 3a) is quite different from that of the sum of the voltammetric signals of three
single amino acids (Fig. 3b). This means that the additivity of three compounds can
be ascribed to the analyte-analyte interaction effects during oxidation. Therefore,
the position of peaks and/or shape of voltammograms could be changed with these
effects. This is typical fouling during medsure{nem which could be caused by, for
example, products of cysteih oxidation at the first peak being adsorbed to the
electrode and thereby reducing the surface area for the oxidation of tyrosin and
tryptophan at higher potentials. k
Combination of cyclic voltammetry and chemomemcs may allow the resolution
and simultaneous determination of Cyc, Tyr and Trp in mixtures without using a
physical separation. The used chemometric techniques in this work were PCR,
PLS, ANN and PC-ANN. The calibration sets for these methods were the same as
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Fig. 2. Cyclic voltammograms of amino acid solutions ét different concentrations: (A) Cys, (B)
Tyr, (Cy Trp in 0.1 M KCl and phosphate buffer 0.1 M (pH =7.5): (a) 7.80, (b} 22.06. (¢)
49.10, (d) 77.40, (e) 101.50, (f) 122.20 uM
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Fig. 3. Cyclic voltammograms of a mixture of amino acids: (a) The sum of the signals of each
component, (b) ternary mixture in 0.1M KCl and phosphate buffer 0.1 M (pH =7.5)

those given in Table-1. The compositions were orthogonally designed in order to
obtain maximum information from calibration procedure.

TABLE-1
COMPOSITIONS OF THE CALIBRATION SAMPLES (x 107)

Sample No. Cys Tyr Trp . Sample No.. = Cys Tyr Trp

I 0.60 0.20 0.12 14, 2.40 5.00 0.24
20060 0.60 0.24 15. 240 7.50 0.48
3. 0.60 1.00 048 16, 5.00 0.20 0.48
4 0.60 5.00 0.80 17. 5.00 0.60 0.80
5. 0.60 750 088 | 8. 5.00 1.00 0.88
6. 1.00 0.20 088 | 19 5.00 5.00 0.12
7. 1.00 0.60 012 | 20, 5.00 7.50 0.24
§. 100 1.00 0.24 21. 7.50 0.20 0.24
9. 1.00 5.00 048 22. 7.50 0.60 0.48
0. 1.00 7.50 080 | 2. 7.50 1.00 0.80
1. 2.40 0.20 0.80 24. 7.50 5.00 0.88
12. 2.40 060 088 | 25 7.50 7.50 0.12
13, 2.40 100 012

To obtain optimum number of principal components a plot of the PRESS
against the number of factors for each individuak component indicates a minimum
value of optimal number of factors. For finding the smallest model (fewest
number of factors) the F statistics was used to carry out the significance
determination™. Basically, in PCR and PLS three principal components should
be sufficient for these three component systems. However, it cannot be analyzed

for Cys, Tyr and Trp by PCR and PLS using only three principal components.

Improvements were obtained when 7, 9 and 10 principal components were
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included for Cys, Tyr and Trp respectively in PCR analysis. But in PLS analysis
7, 8 and 9 latent variables were obtained. Three factors were attributed to each
analyte and additional factors might be attributed to interactions and/or shifts in
the shapes of voltammograms. Obtained results from PCR and PLS are given in
Table 3. o

TABLE-2

COMPOSITIONS OF THE TEST SAMPLES (x 107%)
Sample No. Cys Tyr Trp
1. 14 6.0 0.16
2. 2 - 2.0 0.60
3. 2 0.4 0.30
4. 6 0.4 0.60
5. 6 0.8 0.40
6. 7 2.0 0.40
7. 7 6.0 0.16
TABLE-3

CALIBRATION AND PREDICTION ERRORS FOR
PCR, PLS, ANN AND PC-ANN ANALYSIS

PCR PLS ANN  PC-ANN

Cys:

RMSEC 467 . 434 1.57 0.23

RMSEP 5.20 500 2569 2.06
Tyr:

RMSEC ~ 2.87 252 131 0.32

RMSEP 8.73 7.69 5.85 4.35
Trp: -

RMSEC 5.28 3.98 3.87 1.72

RMSEP 336 3.52 10.68 3.09

From this point, what seems a non-linear multivariate calibration technigue is
necessary. Therefore an alternative approach is to use neural networks. In this
work feed forward neural networks were used. The used networks consisted of
an input layer. The currents at the 10 mV intervals for forward scan were used
as mputs. A hidden layer with sigmoidal transfer function was selected. The output
was simply the estimated concentration. Sigmoidal transfer function was used in
output layer. Before training the input (i.e., currents) and target values (i.e.,
concentrations) were normalized between 0.1 and 0.9.%' In order to reduce the
size of network each concentration was separately estimated, so that all calcula-
tions only had one output, to be*comparable to the PLS and PCR results, which
were separately performed for each compound. During the training phase for
neural network analysis, extensive experimentation was performed to define
appropriate network parameters. Although the selection of neurons in the hidden
layers in a back-propagation network is empirical, it is recognized that this choice
can have a significant effect on network performance. A large number of hidden
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neurons can provide more predicting power, but the network will require more
computation time and may also suffer in terms of its ability to generalize for an
unknown data set>2. Different numbers of neurons in the hidden layer (from 1 to
10) were tested at an arbitrary learning rate and momentum. The performance of
the network stabilized after the inclusion of an adequate number of hidden
neurons (more than 5) when the training reached sufficient epochs. Therefore 5
neurons in hidden layer were selected as optimum. Then, learning rate and
momentum were optimized in a similar way. Optimum values of learning rate
and momentum were 0.1 and 0.8, respectively.

The optimum number of epochs for each component was 1nvest1gated and
after 2500 epochs was found as optimum (F1g‘ 4). The results obtained from

10 g

! ‘ :

¥
|

B

o 1000 2000 . 3000 - 4000 5000
Epochs
Fig.4. Plot of BESE as the function of the number of epochs for three amino acids: (a, d) Tyr, (b,
e3Cys.4u,. £y Trp. Number of neurons in‘hidden layer were five. (a~c) and (d—f) are training
and prediscyion respectively. (MSE values are for normalized data)

simultaneous analysis of amino acids by ANNs method are given in Table-3.

Including 60 potentials as inputs and 5 neurons in hidden layer would result
in a large number (311) of weights when bias and hidden neurons are included,
which is clearly unjustified by present data set consisting only of 25 samples.
Hence the data was reduced using PCA. As noted above, only 7, 9, 10 principal
componehts were kept as the input to PC-ANN for Cys, Tyr and Trp respectively.
In PC-ANNs, different numbers of neurons in the hidden layer (from 1 to 10)
were tested using a learning rate of 0.1, a momentum term of 0.8 and 10000
iterations. Fig. 5 illustrates the leldtlonsmp between the network error for different
numbers of neurons in the hidden layer for Cys, Tyr and Trp. The numbers of
neurons in the hidden layer at the minimum of these curves were selected as the
optimum number (Fig. 5). Therefore 4, 5 and 6 neurons in hidden layer were
selected as optimum number of neurons for Cys, Tyr and Trp respectively. The
optimum number of epochs for PC-ANN was also obtained. Fig. 6 shows the
plots of MSE as a function of number of epochs for Cys, Tyr and Trp components.
As observed, by continued training beyond 1000 epochs for analytes Cys, Trp
and 10000 epochs for Trp, the performance of the networks was stabilized.
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Fig. 6. Plots of MSE as the function of the number of epochs. Number of neurons in hidden layer
for Cys, Tyrand Trp were five. {(MSE values are for normalized data)
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- Table-3 gives the prediction and calibration errors of ANN and PC-ANN
modeling with optxmum numbers of hidden nodes. From Table-3, it is considered
that the PC-ANN gives better results than ANN, PCR and PLS analyses.

In cyclic voltammetry, the relattonshlps between currents and concentrations
in all potentials except peak potential werenot linear. Especially in the presence
of interactions between analytes these relationships are very complex.

Conclusion

Overlapping peaks in voltarmetric -analysis can be handled by multivariate
calibration techniques in order to extract quantitative analysis. But in the presence
of interactions between analytes the response of the mixture is quite different
from the sum of signals. This problem is poorly resolved by using high number
- of latent variables. For these systems, using of nonlinear techniques leads to better
results. In this study, PC-ANN exhibited better prediction ability than conven-
tional multivariate techniques, such as ANN, PLS and PCR. In addition to its
formal kappiication in q‘ualitative problems it ‘can also be used to predict
quantitatively the concentrations of mixtures, as shown here. The methods
proposed here can serve for the ana1y51s of oxidizable amino acids, where
increased speed im obtaining the results is crucial and may become an attractive
alternative to chromatographic techmques which are more tedious and time-con-
suming.
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