Synthesis and Characterization of Mononuclear and Binuclear Complexes of Ni(II) and Cu(II) derived from Aromatic Hydrazones

R.S. MANDAL and LALITA MISHRA*

Department of Chemistry, MLSM College (L.N. Mithila University)

Darbhanga-846 004, India

In the present work, the synthesis and characterization of mononuclear and binuclear complexes of Ni(II) and Cu(II) derived from aromatic hydrazones is described.

Key Words: Mononuclear and binuclear complexes, Ni(II), Cu(II), Hydrazones.

INTRODUCTION

Several authors reported the hydrazones of aldehydes and ketones¹⁻⁴ for the formation of Schiff's bases and their metal complexes. In continuation of the work of Jha *et al.*⁵ we have prepared some new hydrazones, *viz.*, *o*-hydroxy-5-methyl salicylidene hydrazone (OHMSAHYH), *o*-hydroxy-5-methyl acetophenone hydrazone (OHMAPHYH), *o*-hydroxy-5-methyl acetophenone hydrazone (OHMEAPHYH), *o*-hydroxy-5-methyl acetophenone phenyl hydrazone (OHMESAHYPH) and *o*-hydroxy-4-methoxy salicylidene phenyl hydrazone (OHMESAHYPH) and *o*-hydroxy-5-methyl salicylidene phenyl hydrazone (OHMSAHYPH) and the mononuclear as well as binuclear complexes of Ni(II) and Cu(II) have been synthesized and characterized on the basis of elemental analysis, conductance, magnetic moments and spectral data.

EXPERIMENTAL

Preparation of ML₂ compounds: The corresponding aqueous metal salt solutions (0.01 M) were treated with methanoic solutions of ligands (0.02 M) and digested on water bath for about half an hour. The solid, coloured compounds were filtered, washed with methanol and dried over fused calcium chloride.

Preparation of ML₂B₂ compounds: The above prepared ML₂ solid compounds were taken in fusion tubes and treated with 3–4 drops of α , β , γ -picoline. The fusion tubes were heated on a water bath for about 5 min and left for 3–4 d. The solid compounds were washed with methanol, filtered and dried over vacuum desiccators.

Preparation of M₂L₂X₂ or M₂L₂(NO₃)₂ type complexes: The ML₂ type complexes were dissolved in hot ethanol and treated with aqueous hydrated MX₂ or $M(NO_3)_2$ type compound in the ratio (1:1). Both solutions were taken in a conical flask attached with Liebig condenser. The solutions were refluxed for about 6 h. The solid compounds were cooled, filtered, washed with ethanol and water and dried in vacuum desiccators.

96 Mandal et al. Asian J. Chem.

Preparation of $M_2L_2X_2B_4$ type complexes: The above prepared $M_2L_2X_2$ complexes were taken in fusion tubes and treated with 3–4 drops of α,β,γ -picoline and heated on a water bath for 5 min and left for 3–4 d. The solid compounds were washed with a small portion of methanol, filtered and dried over vacuum desiccators.

The metal complexes were decomposed with fuming nitric acid and metal content was determined with the method reported in literature^{6, 7}. C, H and N were determined at CDRI, Lucknow.

The magnetic moments of solids complexes were determined at room temperature on a Gouy balance using solid copper(II) sulphate pentahydrate as a calibrant. The conductivities of all the complexes were determined by using Systronics conductivity meter bridge in 10⁻³ M in DMF solution. IR spectra, electronic spectra and UV reflectance spectra were recorded at CDRI, Lucknow.

RESULTS AND DISCUSSION

On the basis of analytical data (Table-1) it has been noted that Ni(II) and Cu(II) form mononuclear complexes of the formulae NiL₂, CuL₂, NiL₂B₂ and CuL₂B₂ and binuclear complexes of the formulae NiL₂X₂, Cu₂L₂X₂, Ni₂L₂(NO₃)₂, Cu₂L₂X₂B₄ type, where L denotes:

- (1) o-hydroxy 5-methyl salicylidene hydrazone (OHMSAHYH)
- (2) o-hydroxy 5-methyl acetophenone hydrazone (OHMAPHYH)
- (3) 2-Hydroxy 4-methoxy acetophenone hydrazone (OHMEAPHYH)
- (4) o-hydroxy 5-methyl acetophenone phenyl hydrazone (OHMAPHYPH)
- (5) o-hydroxy 4-methoxy salicylidene phenyl hydrazone (OHMESAHYPH)
- (6) o-hydroxy 5-methyl salicylidene phenyl hydrazone (OHMSAHYPH) X = Cl and $B = \alpha$, β , γ -picoline.

TABLE-1
ANALYTICAL DATA OF Ni(II) AND Cu(II) COMPLEXES OF HYDRAZONES

S.No.	Formula	Colour	Element analysis (%), Found (Calcd.)			
	i Omitia		С	Н	N	М
1.	Ni(OHMAPHY) ₂	Yellow	60.93 (56.25)	5.37 (5.72)	16.95 (14.50)	17.75 (15.10)
2.	Ni(OHMEAPHY) ₂	Pale yellow	55.70 (51.92)	5.18 (5.28)	15.62 (13.46)	16.39 (13.94)
3.	Ni(OHMSAHY) ₂	Light yellow	50.93 (53.93)	4.37 (5.05)	16.95 (15.73)	17.75 (16.29)
4.	Ni(OHMAPHYP) ₂	Light yellow	60.63 (67.16)	5.58 (5.59)	10.82 (10.44)	11.33 (10.82)
5.	Ni(OHMEAPHYP) ₂	Deep yellow	63.72 (63.30)	4.70 (5.27)	11.29 (09.84)	12.12 (10.32)
6.	Ni(OHMSAHYP) ₂	Pink	69.70 (66.04)	5.55 (5.11)	10.82 (11.00)	11.33 (11.54)
7.	Ni(α , β , γ -pic) ₂ ·(OHMSAHY) ₂	Green	50.54 (67.71)	5.90 (5.01)	17.00 (13.16)	11.05 (09.09)

S.No.	Formula	Element analysis (%), Found (Calcd.					
		Colour -	С	Н	N	M	
8.	Ni(α, β, γ-pic) ₂ ·(OHMEAPHYP) ₂	Yellowish green	68.10 (65.68)	8.90 (6.02)	12.91 (11.49)	9.11 (8.03)	
9.	Cu(OHMAPHY) ₂	Green	50.12 (55.45)	5.32 (5.64)	17.63 (14.37)	18.89 (16.31)	
10.	Cu(OHMEAPHY) ₂	Green	52.88 (51.24)	5.14 (5.21)	17.40 (13.26)	15.30 (15.07)	
11.	Cu(OHMSAHY) ₂	Light green	50.11 (53.10)	5.33 (4.97)	16.64 (15.48)	18.88 (17.57)	
12.	Cu(OHMAPHYP) ₂	Green	64.78 (66.47)	5.11 (5.53)	11.54 (10 34)	12.90 (11.73)	
13.	Cu(OHMEAPHYP) ₂	Light Green	64.82 (62.82)	5.66 (5.23)	11.70 (09.77)	12.00 (10.99)	
14.	Cu(OHMAPHYP) ₂	Light green	62.79 (65.49)	5.10 (5.06)	11.52 (12 28)	12.90 (10.91)	
15.	Cu(α , β , γ -pic) ₂ ·(OHMSAHY) ₂	Gray	60.92 (59.65)	5.82 (6.11)	16.80 (16.06)	12.75 (12.04)	
16.	$Cu(\alpha, \beta, \gamma\text{-pic})_2 \cdot (OHMSAHYP)_2$	65.43 (67.55)	05.50 (05.92)	12.55 (12.44)	CONTRACTOR OF THE PARTY OF THE	09.71 (09.33	
17.	Ni ₂ (OHMAPHY) ₂ Cl ₂	36.40 (41.99)	03.68 (04.27)	12.33 (10.88)	15.33 (13.78)	25.61 (22.82	
18.	Ni ₂ (OHMEAPHY) ₂ Cl ₂	39.35 (31.39)	04.15 (04.10)	11.40 (14.51)	14.68 (14.67)	23.67 (24.13	
19.	Ni ₂ (OHMSAHY) ₂ (NO ₃) ₂	32.25 (35.59)	02.20 (03.33)	10.23 (15.57)	quinteriories GEASPONEID	22.41 (21.76	
20.	$Ni_2(OHMAPHY)_2Cl_2[\alpha, \beta, \gamma\text{-pic}]_4$	52.00 (54.39)	04.92 (05.96)	13.11 (13.35)	08.85 (08.45)	14.20 (14.00	
21.	Ni ₂ (OHMEAPHY) ₂ Cl ₂ [α, β, γ-pic] ₄	53.98 (52.39)	05.22 (05.74)	13.15 (12.86)	08.20 (08.14)	14.11 (13.49	
22.	$Ni_2(OHMSAHY)_2(NO_3)_2[\alpha, \beta, \gamma\text{-pic}]_4$	48.90 (50.03)	04.95 (05.32)	13.12 (16.21)	ensembro) p	14.11 (13.59	
23.	Cu ₂ (OHMAPHY) ₂ (NO ₃) ₂	34.58 (37.42)	04.24 (03.81)	14.40 (14.55)	SAME AND ADDRESS OF THE SAME ADDRESS OF THE SAME AND A	23.20 (22.02	
24.	Cu ₂ (OHMEAPHY) ₂ (NO ₃) ₂	34.57 (35,46)	03.60 (03.61)	04.23 (13.79)	www.	23.11 (20.86	
25.	Cu ₂ (OHMAPHY) ₂ Cl ₂	56.11 (41.22)	11.99 (04.19)	04.12 (10.68)	15.13 (13.53)	27.13 (24.25	
26.	Cu ₂ (OHMEAPHY) ₂ Cl ₂	38.51 (38.84)	03.92 (03.95)	11.40 (10.07)	14.48 (12.75)	39.53 (22.85	
27.	$Cu_2(OHMAPHY)_2Cl_2[\alpha, \beta, \gamma\text{-pic}]_4$	52.00 (53.77)	05.92 (05.89)	13.47 (13.20)	08.74 (08.36)	15.33 (14.98	
28.	$Cu_2(OHMEAPHY)_2(NO_3)_2[\alpha, \beta, \gamma\text{-pic}]$		05.32 (05.35)	05.42		14.25 (13.61	

TABLE-2
MAGNETIC MOMENT AND ELECTRONIC SPECTRAL DATA OF COMPLEXES

Sl. No.	Formula	μεπ (BM)	Electronic s	spectral band (cm ⁻¹)				
			$^{1}A_{1g}\rightarrow ^{1}A_{2g}$	$^{1}A_{1g}\rightarrow ^{1}B_{1g}$				
1.	Ni(OHMAPHY) ₂	Diamag.	15550	19960				
2.	Ni(OHMEAPHY) ₂	Diamag.	15460	19900				
3.	Ni(OHMSAHY) ₂	Diamag.	15550	19960				
4.	Ni(OHMAPHYP) ₂	Diamag.	15500	19895				
5.	Ni(OHMEAPHYP) ₂	Diamag.	15510	19910				
6.	Ni(OHMSAHYP) ₂	Diamag.	15500	19885				
		3,	$A_{2g}(F) \rightarrow {}^{3}T_{2g}(F) {}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F) {}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$					
7.	Ni(α , β , γ -pic) ₂ · (OHMAPHY) ₂	2.99–3.02	10650	16150 26150				
8.	Ni(α , β , γ -pic) ₂ · (OHMAPHY) ₂	2.99–3.02	10550	15650 26850				
<u></u>			${}^{2}\mathrm{B}_{1g} \rightarrow {}^{2}\mathrm{A}_{1g} \text{ to } {}^{2}\mathrm{B}_{1g} \rightarrow {}^{2}\mathrm{E}_{g}$					
9.	Cu(OHMAPHY) ₂	1.84	16000 (Single band)					
10.	Cu(OHMEAPHY) ₂	1.81	15584, 16600					
11.	Cu(OHMSAHY) ₂	1.83	16000					
12.	Cu(OHMAPHYP) ₂	1.83	15000, 16500					
13.	Cu(OHMEAPHYP) ₂	1.82	16000					
14.	Cu(OHMSAHYP) ₂	1.83	15000, 16500					
			$^{2}E_{g} \rightarrow ^{2}T_{2g}, [^{2}B_{1g} \rightarrow ^{2}A_{1g} ^{2}B_{1g} \rightarrow ^{2}B_{2g}]$					
15.	Cu(α , β , γ -pic) ₂ · (OHMSAHY) ₂	1.89–1.91	13750–14500					
16.	Cu(α , β , γ -pic) ₂ · (OHMSAHYP) ₂	1.91–1.92	13	750–14500				
			$^{1}A_{1g} \rightarrow ^{1}A_{2g}$	$_{\rm g}$ 1 A _{1g} \rightarrow 1 B _{1g}				
17.	Ni ₂ (OHMAPHY) ₂ Cl ₂		15550	19960				
18.	Ni ₂ (OHMEAPHY) ₂ Cl ₂		15510	19910				
19.	Ni ₂ (OHMSAHY) ₂ (NO ₃) ₂		15460	19900				
			$^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F), \ ^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$					
20.	$Ni_2(OHMAPHY)_2Cl_2$ [α , β , γ -pic] ₄	2.40-2.42	10650, 16180, 26150					
21.	$Ni_2(OHMEAPHY)_2Cl_2$ [α , β , γ -pic] ₄	2.21-2.42	10550, 16050, 26050					
22.	$Ni_2(OHMSAHY)_2(NO_3)_2$ [α , β , γ -pic] ₄	2.32-2.41	10200	, 15650, 26850				

Sl. No. Formula	μ _{eff} (BM)	Electronic spectral band (cm ⁻¹)
		$^{2}\mathrm{B}_{1g} \rightarrow ^{2}\mathrm{E}_{g}$
23. Cu ₂ (OHMAPHY) ₂ (NO ₃) ₂	1.12	15384, 16304
24. Cu ₂ (OHMEAPHY) ₂ (NO ₃) ₂	1.14	15364, 16304
25. Cu ₂ (OHMAPHY) ₂ Cl ₂	1.16	14600, 15100
26. Cu ₂ (OHMEAPHY) ₂ Cl ₂	1.20	15000–16500
		$^{2}\text{E}_{\text{g}} \rightarrow ^{2}\text{T}_{2\text{g}}$
27. Cu ₂ (OHMAPHY) ₂ Cl ₂ [α, β, γ-pic] ₄	1.12	13790, 14000
28. Cu ₂ (OHMEAPHY) ₂ (NO ₃) ₂ [α, β, γ-pic] ₄	1.39	13000, 14000

TABLE-3
KEY IR SPECTRAL BANDS (cm⁻¹) OF MONONUCLEAR METAL
COMPLEXES

Formula	ν(M–N)	ν(M-O)	ν(NH ₂)	v(C=N)	v(C-O)	ν(O-Me)	ν(C=O)
Ni(OHMAPHY) ₂	450	500	3420	1630	1290	1010	
Ni(OHMEAPHY) ₂	455	520	3410	1640	1300	1010	WANGE
Ni(OHMSAHY) ₂	450	510	3410	_	1280	VASPAGGREGA	1660
Ni(OHMAPHYP) ₂	445	505	3415		1280	***************************************	1665
Ni(OHMEAPHYP) ₂	450	520	3400	-	1295	tilikiningkengg	1660
Ni(OHMSAHYP) ₂	450	500	3410	,	1280	&continuous graphs	1665
Ni(α , β , γ -pic) ₂ · (OHMSAHY) ₂	455	510	3405	1630	1300	1010	
Ni(α , β , γ -pic) ₂ · (OHMEAPHYP) ₂	450	515	3400	1640	1295	1010	GG 139-kyrliner
Cu(OHMAPHY) ₂	445	510	3420	1630	1295	1010	***********
Cu(OHMEAPHY) ₂	450	505	3405	1640	1295	1010	
Cu(OHMSAHY) ₂	455	500	3410		1285	40000000mAd-	1660
Cu(OHMAPHYP) ₂	450	510	3415		1280		1665
Cu(OHMEAPHYP) ₂	445	500	3400	1630	1295	1010	
Cu(OHMSAHYP) ₂	450	505	3405	1640	1295	1010	
Cu(OHMAPHY) ₂ Cl ₂ [α, β, γ-pic] ₂	455	520	3410		1280	Ментиници	1660
Cu(OHMSAHYP) ₂ (NO ₃) ₂ [α, β, γ-pic] ₂	450	500	3400		1285	**************************************	1665

100 Mandal et al. Asian J. Chem.

Thus, diamagnetic NiL_2 is proposed to have square-planar geometry⁸. Complexes of the type NiL_2B_2 have been found to be paramagnetic having magnetic moment values betwen 2.99–3.02 B.M. suggesting six-coordinated octahedral structure for these complexes^{9–11}.

The binuclear complexes of the type $Ni_2L_2X_2$ and $Ni_2L_2(NO_3)_2$ are diamagnetic in nature accordingly suggested to have square-planar geometry. For the binuclear complexes of the type $Ni_2L_2X_2B_4$ and $Ni_2L_2(NO_3)_2B_4$ μ_{eff} ranges between 2.21 and 2.40 B.M. These are less than the expected range of magnetic moments (3.1–3.3 B.M.) for octrahedral Ni(II). The magnetic data can be interpreted in terms of the presence of antiferromagnetic exchange 12–15 through hydrazine-nitrogen bridge.

Magnetic moment values of Cu(II) complexes, CuL_2 , have been found to be 1.81-1.84 B.M. which is in the range of the square-planar complexes, whereas for CuL_2B_2 type the magnetic moments have been found to be 1.89-1.92 B.M. which is in the range of the octahedral geometry¹⁶⁻¹⁹.

The magnetic moment data found for the binuclear CuL₂X₂ and Cu₂L₂B₄ are in the range of 1.2–1.16 B.M. and 1.12–1.39 B.M. which is due to one unpaired electron. The data agree well with a dimetric model²⁰.

Diamagnetic complexes NiL_2 and $Ni_2L_2X_2$ show the bands around 15550 and 20000 cm⁻¹ indicating square-planar structure for these complexes²¹.

According to observed band position in the reflection spectra of NiL_2B_2 and $Ni_2L_2X_2B_4/a$ pseudo-octahedral geometry is proposed.

 CuL_2 and $Cu_2L_2X_2$ show a broad band at about 15000–16650 cm⁻¹ which may be assigned due to the combination of transition in square-planar field^{22–26}.

$$^{2}B_{1g} \rightarrow ^{2}B_{2g}(v_{1}), \quad ^{2}B_{1g} \rightarrow ^{2}A_{1g}(v_{2}), \quad ^{1}B_{1g} \rightarrow ^{1}E_{g}(v_{3})$$

In CuL_2B_2 and $CuL_2X_2B_4$ a broad band has been observed at 13750–14300 cm⁻¹ due to the combination of

$$^2\!B_{1g} \to ^2\!A_{1g}(\nu_1), \qquad ^2\!B_{1g} \to ^2\!B_{2g}(\nu_2), \qquad ^2\!B_{1g} \to ^2\!E_g(\nu_3)$$

This is indicative of distorted octahedral geometry for the complexes of the $Cu_2L_2B_2$ type and $Cu_2L_2X_2B_4$ type.

Comparison of the infrared spectral bands of ligands and their complexes gives very useful information about the nature of the bonding as well as binding sites. A broad band observed in free ligand at around 3200 cm⁻¹ due to v(O-H) is absent in its complexes indicating coordination of phenolic oxygen by deprotonation²⁷.

A weak band present in free ligand at about 3400 cm⁻¹ due to ν (N–H) remains unaffected upon complexation indicating non-involvement of primary amine residue. Bonds observed around 1650 cm⁻¹ assigned as ν (C=N) (Schiff's residue) in the free ligands get lowered by about 15–25 cm⁻¹ indicating their involvement in coordination²⁸.

A band present at $1010~\text{cm}^{-1}$ in the infrared spectrum of the ligand is assigned to $\nu(C-0)$ due to methoxy group. The band remains unchanged in all the complexes, sugesting non-participation of methoxy group in coordination.

The coordination through oxygen and nitrogen is further confirmed by the occurrence of new bands at 500 and 450 cm⁻¹ in the spectra of complexes which are assigned to $\nu(M-O)$ and $\nu(M-N)$ stretching frequencies respectively.

REFERENCES

- 1. M. Murch, M. Dima and G. Rusu, Chem. Abstr., 74, 1,265,164 (1971).
- 2. B. Singh, P.L. Maurya, B.V. Agarwal and A.K. Dey, J. Indian Chem. Soc., 58, 541 (1981).
- 3. R.C. Agarwal, L. Prasad and N.K. Singh, *Indian J. Chem.*, 14A, 181, 325 (1976).
- 4. A.P. Narimanidze, A.M. Mamlashvili and T.K. Dzhashiashivili, Tr. Gruz. Politech Inst., 4, 34 (1975).
- 5. B.K. Jha, S. Jha and A.K. Jha, Asian J. Chem., 10, 103 (1998).
- 6. A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, 4th Edn., Longmans, p. 329 (1978).
- 7. A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, 4th Edn., Longmans, p. 300 (1978).
- 8. S. Bose, D.K. Roy, M.S. Mitra and T.K. Banik, J. Indian Chem. Soc., 58, 533 (1981).
- 9. K.G. Sharma, R.P. Mathur and R.K. Mehta, J. Indian Chem. Soc., 58, 225 (1981).
- 10. L. Pauling, Nature of Chemical Bonds, Cornell University Press, p. 118 (1940).
- 11. L. Pauling, Nature of Chemical Bonds, Cornell University Press, p. 94 (1940).
- 12. P. Mehta and R.K. Mehta, J. Indian Chem. Soc., 61, 571 (1984).
- 13. K.C. Satpathy, B.B. Jal, R. Mishra and S. Pradhan, J. Indian Chem. Soc., 61, 946 (1984).
- 14. A.K. Jana and B. Sahu, J. Indian Chem. Soc., 61, 936 (1984).
- 15. A. Shyamal and M.R. Maurya, Synth. React. Inorg. Met.-Org. Chem., 16, 39, 60 (1986).
- 16. Ray and Sen, J. Indian Chem. Soc., 25, 47 (1948).
- 17. P.K. Bhattacharya, J. Indian Chem. Soc., 60, 18 (1981).
- 18. L. Sacconi and S.M. Elapolini, J. Chem. Soc., 278 (1964).
- 19. K.M. Purohit and D.V. Ramanna Rao, J. Indian Chem. Soc., 58, 78 (1981).
- 20. D.W. Meek and S.A. Ehrhardt, Inorg. Chem., 5, 584 (1965).
- 21. A.B.P. Lever, Coord. Chem. Rev., 3, 119 (1968).
- 22. S.K. Tiwari, D.P.S. Rathore and Prabash, J. Indian Chem. Soc., 61, 108 (1984).
- 23. A. Shyamal and M.R. Maurya, Synth. React. Inorg. Met.-Org. Chem., 16, 39, 60 (1986).
- 24. C.R. Kaueker and A.T. Casey, J. Inorg. Nucl. Chem., 31, 3105.
- W. Manch and W.C. Fernelius, J. Chem. Educ., 38, 192 (1961).
- 26. W. Byers, Inorg. Chim. Acta, 3, 415 (1969).
- 27. A. Shyamal and M.R. Maurya, Synth. React. Inorg. Met.-Org. Chem., 16, 49 (1986).
- 28. G.P. Pokhariyal, V.K. Mahesh and R.P. Singh, J. Indian Chem. Soc., 61, 745 (1984).