Asian Journal of Chemistry

Synthesis, Characterization and Antimicrobial, Antioxidant Properties of Some Benzopyrone Derivatives

B.S. JAYASHREE*, BHIMANNA K. KUPPAST[†] and K.N. VENUGOPALA[†] Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences Manipal-576104, India E-mail: alameenpc@hotmail.com; mkuppast@yahoo.com

> The purpose of present study is to develop potential antimicrobial and antioxidant agents. In this attempt three series of the substituted flavones such as 3-hydroxy flavones (**4aj**), 3-methoxy flavones (**5a**-**e**) and 3-acetyloxy flavones (**6ag**) were synthesized and characterized by IR, ¹H NMR and mass spectral analysis. Test compounds were subjected for the determination of lipophillic parameter and pharmacological activities such as quantitative antibacterial activity and antioxidant activity by MIC (ELISA) and DPPH* method, respectively.

> Key Words: Hydroxy flavones, Methoxy flavones, Acetyloxy flavones, Antimicrobial activity, Antioxidant and Partition coefficient.

INTRODUCTION

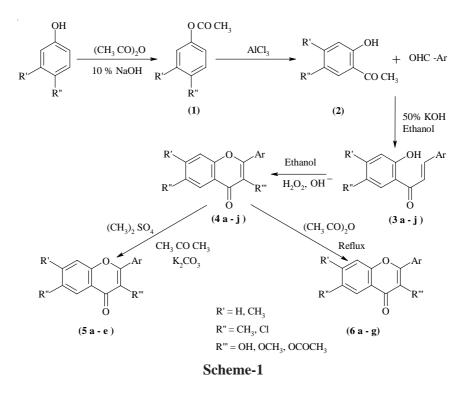
Compounds having chromone (γ -benzopyrone) moiety are associated with interesting pharmacological activities such as antibacterial, antifungal, antidiabetic, antiallergic, diuretic¹, antiinflammatory, analgesic and antipyretic², bioflavonoids are also reported as strong inhibitors of HIV reverse transcriptase³, antioxidant⁴, anticancer⁵ and against cardiovascular diseases and disorder of liver⁶. Flavonoids, the derivatives of chromones are polyhydroxylated compounds and they are capable of selectively reacting with free radicals⁷. Even though natural flavonoids are highly potent, attempts have been made to improve their stability, solubility, efficacy and kinetics. Hence, with the knowledge of semisynthetic and synthetic science, flavonoids were synthesized in the laboratory by convenient and cost effective methods from past few decades. Based on their significant biological activities, it was planned to synthesize substituted flavones for the determination of antimicrobial, antioxidant activity. Some of their physical properties are determined such as λ_{max} and partition coefficient (log P).

[†]Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Near Lalbagh Main Gate, Hosur Road, Bangalore-560027, India.

Asian J. Chem.

EXPERIMENTAL

Melting points were determined in open capillary tubes and are found uncorrected. IR spectra were recorded on Fourier transform IR spectrophotometer (Shimadzu 8700) using KBr disc method. ¹H NMR spectra were recorded on AMX-400 liquid state NMR spectrometer in CDCl₃ and CD₃COCD₃ using TMS as an internal reference standard. Mass spectra were recorded on LC-MS Triple Quadruple Mass Spectrometer (Sciex 3000, Applied Biosystems) using electrospray ionization-positive ion mode. The purity of the test compounds was determined by thin layer chromatography. The λ_{max} of the synthesized compounds for determination of log P was recorded on UV-visible spectrophotometer (Shimadzu 1601, 200 to 400 η m). Physical data of the intermediate chalcones were recorded in Table-1 and final test compounds in Table-2. Quantitative antimicrobial and antioxidant studies were done by two fold dilution method and DPPH* method, respectively and shown in Table-3.


TABLE-1 PHYSICAL PROPERTIES OF VARIOUS SUBSTITUTED CHALCONES (**3a-j**)

Comp	Ŕ	R	Ar	m.f.	m.w.	Yield (%)	m.p. (°C)
3a	CH ₃	Cl	5-Chloro-2-hydroxy phenyl	$C_{16}H_{12}O_3Cl$	322	88	181-183
3b	CH_3	Cl	4-Methoxy phenyl	$C_{17}H_{15}O_3Cl$	302	89	177
3c	CH_3	Cl	4-Dimethyl amino phenyl	$C_{18}H_{18}O_2NCl$	315	85	174
3d	CH_3	Cl	2-Chloro phenyl	$C_{16}H_{13}O_2Cl$	307	78	132-133
3e	CH_3	Cl	3,4-Dimethoxy phenyl	$C_{18}H_{17}O_4Cl$	332	75	178-180
3f	CH_3	Cl	4-Methyl phenyl	$C_{17}H_{15}O_2Cl$	286	78	132-134
3g	Η	Cl	4-Chloro phenyl	$C_{15}H_{10}O_2Cl_2$	292	68	172-174
3h	Η	Cl	4,5-Dimethoxy phenyl	$C_{17}H_{15}O_4Cl$	318	67	163-165
3i	Н	Cl	4-Methyl phenyl	$C_{16}H_{13}O_2Cl$	272	65	123-124
3j	Н	CH_3	4-Dimethyl amino phenyl	$C_{18}H_{19}NO_2$	281	71	118

5-Chloro-2-hydroxy-4-methyl acetophenone (2) was obtained by the reaction of 4-chloro-3-methyl phenol with acetic anhydride in presence of 10% NaOH to form phenolic ester (1), which on subjecting to Fries reaction^{8,9} gave compound (2). The chalcones¹⁰ were prepared by the reaction of substituted aromatic aldehydes with intermediate (2) in presence of 50% KOH in ethanol medium, finally the substituted 3-hydroxy flavones (**4a-j**) were prepared from 2-hydroxy chalcones (**3a-j**) to flavonols with hot alkaline hydrogen peroxide (**Scheme-1**).

6-Chloro-3-hydroxy-7-methyl-2-(4'-methoxy phenyl)-benzopyran 4-one (4b): To a suspension of 0.01 mol of chalcone (**3b**), in 85 mL ethanol was added to 10 mL of 20% aqueous sodium hydroxide followed by the careful addition of 18 mL of 30% hydrogen peroxide over a period of 0.5 h. The reaction mixture was stirred for 3.0 to 3.5 h at 30°C and Vol. 19, No. 2 (2007) Synthesis & Properties of Some Benzopyrone Derivatives 1417

poured into crushed ice containing 5N hydrochloric acid. The precipitate was filtered, washed, dried and recrystallized from ethyl acetate. Compounds (**4a-j**) showed IR (KBr, cm⁻¹) range at 3300-3200 v(-OH), 3100-3000 v(ArC-H), 2985-1875 v(-C-H), 1650-1600 v(lactone C=O), 1600, 1450 v(ArC=C), 1360-1250 v(C-N), 1100-1000 v(C-Cl), 965-675 v(ArC-H).

6-Chloro-3-methoxy-7-methyl-2-(4'-methoxy phenyl)-benzopyran 4-one (5a): 0.01 mol of **4b** was suspended in dry acetone containing powdered anhydrous potassium carbonate (0.03 mol) and dimethyl sulphate (0.02 mol). The suspension was refluxed for 5.0 h. The solvent was evaporated under pressure and the residue diluted with water. The precipitate obtained was filtered, washed, dried and recrystallized from alcohol.

The absence of -OH stretching and presence of C-O stretching in methoxy derivative confirmed the completion of reaction. IR spectra showed the characteristic bands for substituted 3-methoxy flavones (**5a-e**) at the range IR (KBr, cm⁻¹) 3100-3000 v(ArC-H), 2985-1875 v(-C-H), 1650-1640 v(lactone C=O), 1600, 1450 v(ArC=C), 1360-1250 v(C-N), 1150-1300 v(C-O), 1100-1000 v(C-C1), 965-675 v(ArC-H).

3-Acetyloxy-6-chloro-7-methyl-2-(4'-methoxy phenyl)-benzopyran 4-one (6a): To 0.01 mol of substituted 3-hydroxy flavone (**4b**) in 100 mL

L	-							
	R	R	Ar	m.w.	Yield (%)	m.p. (°C)	$\lambda_{ m max}$	log P
	CI	НО	5-Chloro-2-hydroxy phenyl	338	68	232	376	1.056
	ū	НО	4-Methoxy phenyl	316	71	205-206	388	0.578
	ū	НО	4-Dimethyl amino phenyl	329	69	230	453	0.880
	ū	НО	2-Chloro phenyl	320	75	235	407	0.707
	ū	НО	3,4-Dimethoxy phenyl	346	64	178-181	404	0.783
	ū	НО	4-Methyl phenyl	300	69	199-201	389	0.524
	ū	НО	4-Chloro phenyl	306	63	212	375	0.998
	ū	НО	4,5-Dimethoxy phenyl	332	70	238-240	402	0.520
	ū	НО	4-Methyl phenyl	286	65	189-190	388	0.468
	CH_3	НО	4-Dimethyl amino phenyl	295	71	215-216	448	0.623
	G	OCH_3	4-Methoxy phenyl	330	69	148-153	340	1.160
	ū	OCH_3	4-Dimethyl amino phenyl	343	65	150	416	1.200
	C	OCH_3	3,4-Dimethoxy phenyl	360	64	150	325	1.221
	ū	OCH_3	4-Methyl phenyl	314	68	122-125	308	1.128
	C	OCH_3	4-Methyl phenyl	300	63	127	340	0.968
	C	OCOCH ₃	4-Methoxy phenyl	358	69	176-178	334	0.986
	ū	OCOCH ₃	4-Dimethyl amino phenyl	371	65	203-204	409	1.060
	G	OCOCH ₃	4-Methyl phenyl	342	67	170-171	331	1.080
	G	OCOCH ₃	4-Chloro phenyl	348	68	139	317	0.946
	C	OCOCH ₃	4,5-Dimethoxy phenyl	374	67	108-110	339	1.090
	ū	OCOCH ₃	4-Methyl phenyl	328	65	178-180	326	0.952
					0			

Asian J. Chem.

voi. 1	,,	. 10.	2 (1	_000	,,,	, 		Jyı	1111	/010	, u		op	0111	00	01	50	inc	D	/11L	op.	y10	ne		111	uu	V UL	, 1	TI ,
(4a-6g)	Antioxidant	activity	(EC_{50})	(Jug/IIIL)	005	280	280	320	400	330	320	340	350	550	480	480	440	580	620	550	610	660	510	430	460	540	Ι	I	5.1
Y FLAVONE	li	% Inhibition	compared to		00.21	10.52	12.50	12.30	12.50	08.98	21.05	11.94	12.50	18.18	14.03	25.00	18.18	22.85	12.30	14.03	50.00	25.00	25.00	12.50	11.94	25.00	I	I	Ι
-ACETYLOX	Escherichia coli	% Inhibition	compared to		00.62	21.05	25.00	24.61	25.00	17.97	42.10	23.88	25.00	36.36	28.07	50.00	36.36	45.71	24.61	28.07	100.00	50.00	50.00	25.00	23.88	50.00	I	I	Ι
ЛЕТНОХҮ, З		MIC	$(\mu g/50\mu L)$	24.00	04.80	76.80	64.00	65.00	64.00	89.00	38.00	67.00	64.00	44.00	57.00	32.00	44.00	35.00	65.00	57.00	16.00	32.00	32.00	64.00	67.00	32.00	16.00	08.00	Ι
YDROXY, 3-N	sna	% Inhibition	compared to		23.88	22.85	12.50	23.88	50.00	13.91	36.36	48.48	17.97	25.00	24.61	50.00	45.71	25.00	12.33	22.85	25.00	42.10	50.00	25.00	13.91	50.00	I	I	Ι
TABLE-3 TITUTED 3-HY	Staphyloccus aureus	% Inhibition	compared to		47.70	45.71	25.00	47.76	100.00	27.82	72.72	96.96	35.95	50.00	49.23	100.00	91.42	50.00	26.26	45.71	50.00	84.21	100.00	50.00	27.82	100.00	Ι	I	Ι
TABLE-3 ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY OF SUBSTITUTED 3-HYDROXY, 3-METHOXY, 3-ACETYLOXY FLAVONE (4a-6 g)	St	MIC	$(\mu g/50\mu L)$	00 02	07.70	70.40	128.00	67.20	32.00	115.20	44.00	33.00	89.00	64.00	65.00	32.00	35.00	64.00	120.00	70.00	64.00	38.00	32.00	64.00	115.00	32.00	32.00	16.00	I
	Bacillus subtilis	% Inhibition	compared to		00.00	48.48	25.00	50.00	25.00	17.97	45.71	57.14	36.36	42.10	72.72	12.50	57.14	50.00	28.07	57.14	50.00	72.72	50.00	25.00	45.71	25.00	Ι	I	I
		% Inhibition	compared to		00.62	24.24	12.50	25.00	12.50	08.98	22.85	28.57	18.18	21.05	36.36	06.25	28.57	25.00	14.03	28.57	25.00	36.36	25.00	12.50	22.85	12.50	Ι	I	I
		MIC	$(\mu g/50\mu L)$	00.00	32.00	33.00	64.00	32.00	64.00	89.00	35.00	28.00	44.00	38.00	22.00	28.00	28.00	32.00	57.00	28.00	32.00	22.00	32.00	64.00	35.00	64.00	08.00	16.00	I
		Comn	.duno.		4a	4b	4c	4d	4e	4f	4g	4h	4i	4j	5a	5b	5c	5d	Sе	6a	6b	6c	6d	6e	6f	6g	Gentamycin	Amoxycillin	Ascorbic acid

Vol. 19, No. 2 (2007) Synthesis & Properties of Some Benzopyrone Derivatives 1419

round bottom flask was added 10-15 mL of acetic anhydride and the mixture was refluxed for 2 h. The resulting solution was cooled at room temperature followed by addition of ice cold water. The solid separated was filtered, washed with cold water and recrystallized from alcohol.

The absence of -OH stretching and presence of C=O stretching above 700 cm⁻¹ confirmed the completion of reaction. IR spectra showed the characteristic bands for 3-acetyloxy flavones (**6a-g**) at the range IR (KBr, cm⁻¹) 3100-3000 v(ArC-H), 2985-1875 v(-C-H), 1750-1700 v(C=O), 1650-1640 v(lactone C=O), 1600, 1450 v(ArC=C), 1360-1250 v(C-N), 1150-1300 v(C-O), 1100-1000 v(C-Cl), 965-675 v(ArC-H).

¹H NMR **4b**: = 8.19-8.21 (d, 2H, Ar-H, J = 9.10 Hz), 8.18 (s, 1H, Ar-H), 7.47 (s, 1H, Ar-H), 7.03-7.05 (d, 2H, Ar-H, J = 9.08 Hz), 6.89 (s, 1H, OH), 3.89 (s, 3H, OCH₃), 2.52 (s, 3H, CH₃). **4c**: = 8.16 (s, 1H, Ar-H), 8.13-8.15 (d, 2H, Ar-H, J = 9.2 Hz), 7.42 (s, 1H, Ar-H), 6.85 (s, 1H, OH), 6.77-6.79 (d, 2H, Ar-H, J = 9.18 Hz), 3.06 (s, 6H, NMe₂), 2.50 (s, 3H, CH₃). **5a**: = 8.11-8.13 (d, 2H, Ar-H, J = 9.06 Hz), 8.05 (s, 1H, Ar-H), 7.69 (s, 1H, Ar-H), 7.11-7.13 (d, 2H, Ar-H, J = 9.05 Hz), 3.91 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 2.52 (s, 3H, CH₃). **6b**: = 8.16 (s, 1H, Ar-H), 7.79-7.82 (d, 2H, Ar-H, J = 9.13 Hz), 7.40 (s, 1H, Ar-H), 6.72-6.75 (d, 2H, Ar-H, J = 9.13 Hz), 3.07 (s, 6H, NMe₂), 2.50 (s, 3H, CH₃), 2.37 (s, 3H, CH₃).

Mass Spectra **4b**: = m/e 318 (M+2), 316 (base peak). Other peaks were observed at m/e: 301, 273, 245, 181, 158, 152, 135, 133, 119, 105, 92 and 77. **4c**: = m/e 331 (M+2), 329 (base peak). Other peaks were observed at m/e: 301, 272, 229, 164, 132, 118, 105 and 90. **5a**: = m/e 332 (M+2), 329 (base peak). Other peaks were observed at m/e: 315, 299, 287, 259, 244, 209, 181, 165, 136, 132, 107 and 92.

Partition coefficient

Hydrophobicity is generally parameterized by partition coefficient or some. It was determined by using the Classical Shake Method¹¹ *n*-octanol and phosphate buffer (pH 7.4). Partition coefficient is defined as the ratio of the amount of the drug present in organic phase to that present in the aqueous phase.

Partition coefficient = $P = C_{org} / C_{aq}$

 $\mathbf{P} = \mathbf{B}_{\mathrm{E}} / \mathbf{B}_{\mathrm{E}} - \mathbf{A}_{\mathrm{E}}$

where, $B_E = Absorbance$ before extraction, $A_E = Absorbance$ after extraction, log P was then calculated gives an idea about the solubility and lipid profile of test sample.

Evaluation of antioxidant activity

Newly synthesized test compounds (4a-j, 5a-e and 6a-g) were subjected for *in vitro* free radical scavenging activity¹² using a method based on the reduction of a methanolic solution of the colored DPPH (1,1Vol. 19, No. 2 (2007) Synthesis & Properties of Some Benzopyrone Derivatives 1421

diphenyl-2-picryl hydrazyl) radical. The activity was expressed as effective concentration at 50% reduction (EC_{50}) or the concentration of the test solution required to give a 50% decrease in absorbance compared to that of blank solution as shown in Table-3.

Evaluation of antimicrobial activity

Antibacterial screening of the synthesized compounds was carried out by cup-plate method¹³ using three strains *i.e.*, *Bacillus subtilis*, *Staphylococcus aureus* and *Escherichia coli*. Gentamycin and Ampicillin were used as reference samples and antibacterial activity of the test compounds (**4a-6g**) is presented in Table-3. The MIC of the test compounds showing promising antimicrobial activity was determined using 96-well plate (Two fold dilution technique) using an ELISA Reader¹⁴ and percentage of inhibition compared to gentamycin and amoxycillin was recorded for the test compounds.

RESULTS AND DISCUSSION

All the twenty two test compounds synthesized, purified and characterized were screened for their qualitative antimicrobial activity. They were tested against three species of bacteria namely Bacillus subtilis, Escherichia coli and Staphylococcus aureus. The technique used was Agar diffusion method using 100 mg/0.1 mL of amoxycillin and gentamycin as standard. The test compounds such as 4h, 5a, 6a and 6c showed activity with MIC values at 28, 22, 28 and 22, respectively for Bacillus subtilis. Test compounds such as 6g, 6d and 5b showed activity with MIC values at 32, 32 and 32, respectively for Staphylococcus aureus. The percentage inhibition were found to be 100, 100 and 100%, respectively with that of gentamycin and 50, 50 and 50%, respectively with that of amoxicillin as shown in Table-3. Thus, it was speculated that the minimum structural requirements to show optimal antibacterial activity was the presence of 4'-dimethylamino phenyl group at 2-position and presence of 4'-chloro phenyl group at 2-position. The test compounds such as 6g, 6d, 5b and 6b showed activity with MIC values at 32, 32, 32 and 16, respectively for Escherichia coli as shown in Table-3. it was found that test compounds such as 6g, 6b and 5b with 4'-dimethylamino phenyl group at 2-position showed significant activity against Staphylococcus aureus than that of test compounds such as 6d and 6e substituted with 4'-chloro phenyl and 4', 5'dimethoxy phenyl group at 2-position, respectively.

The EC₅₀ values for the 3-hydroxy flavones (**4a-j**), 3-methoxy flavones (**5a-e**) and 3-acetyloxy flavones (**6a-g**) were found to be in the range of 280-550, 440-620 and 430-660, respectively. Significant activity was observed in molecules with -OH functional groups.

Asian J. Chem.

The presence of 3-hydroxyl group in the flavones had a significance influence on the partition coefficient of the test compounds. Out of twenty two test compounds (4a-6g) synthesized, ten test compounds having -OH group at position 3 were found to have lower log P values than those test compounds having -OCH₃ and -COCH₃ group at 3-position. This might be due to the presence of polar -OH group at 3-position compared to the methoxy and acetyloxy group.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. B.G. Shivananda, Principal, Al-Ameen College of Pharmacy, Bangalore for support and facilities and Dr. S. Asokan, Professor, Department of instrumentation, Indian Institute of Science, Bangalore for ¹H NMR and Mass spectra.

REFERENCES

- 1. B.K. Karale, R.V. Hangargo, A.S. Mane, C.H. Gill and M.S. Shingare, Indian J. Heterocycl. Chem., 11, 81 (2001).
- 2. J.A.D.S. Emim, A.B. Oliveira and A.J. Lapa, J. Pharm. Pharmacol., 46, 118 (1992).
- K.E. Malterud, O.H. Diep and R.B. Sund, *Pharmacol.* 7
 H. Nakane and K. Ono, *Biochemistry*, **29**, 2841 (1990). K.E. Malterud, O.H. Diep and R.B. Sund, Pharmacol. Toxic., 78, 111 (1996).
- 5. J.M. Cassady, J. Nat. Prod., 35, 23 (1990).
- 6. K. Imai and K. Nakachi, British Med. J., 310, 693 (1995).
- 7. B. Fritz, S. Tobias, K. Albrecht, B. Charlotte, C. Kent, A. Anni, J. Franz and K. Joseph, Am. Soc. Biochem. Mol. Bio., 271, 2262 (1996).
- 8. I. L. Finar, Organic Chemistry, Pearson Education, (Singapore) Pvt. Ltd., edn. 6, Vol. 1, p. 704 (2003).
- 9. L.S. Lynda, K.W. Jerome, K. Sang, C.G. Lee, L. Daiel, C.M. Richard, M.M. Robert and M.P. John, Cancer Res., 59, 578 (1991).
- 10. C.P. Garg, V.P. Sharma and R.P. Kapoor, Indian J. Chem., 24B, 1197 (1985).
- 11. http://www.niaid.nih.gov
- 12. T. Vani, M. Rajani, S. Sarkar and C.J. Shishhoo, Int. J. Pharmacog., 35, 313 (1997).
- 13. F. Kavanagh, Analytical Microbiology, Academic Press, New York, p. 125 (1963).
- 14. E. Lowdi, I. Odenholt, S. Bengtsson and O. Cars, Antimicrob. Agents Chemother, 37, 2200 (1993).

(*Received*: 10 January 2006; *Accepted*: 18 September 2006) AJC-5109