Asian Journal of Chemistry

Studies in Protective Coatings of Metals with Special Reference to Organic Inhibitors Mixed with Polyurethane

REETA M. AGRAWAL*, VIJAY R. CHOUREY and S.L. GARG[†] Department of Chemistry, Government Model Autonomous Holkar Science College Indore-452 017, India

> The inhibition of corrosion of steel strips and aluminium strips in different chemical medium and atmosphere have been studied by immersion method. In this investigation, resorcinol and furfural have been tested as corrosiion inhibitors for aluminium and steel strips. These organic compounds have been used by mixing with protective coating material like polyurethane. The study shows that these compounds act as a good corrosion inhibitors with an efficiency which reaches from 40 to 90 % in different environment. The inhibition action of these compounds seems to be due to their adsorption on the metal surface, hence blocking the available area for corrosion.

Key Words: Protective coatings, Polyurethane, Furfural, Resorcinol.

INTRODUCTION

In spite of the large number of material which have been reported as inhibitors for corrosion for steel and aluminium¹⁻⁴, yet researchers are directed for highly efficient inhibitors to be used for specific applications⁵⁻⁸. For this purpose, resorcinol and furfural have been tested in the present work.

Corrosion inhibitors are the substance which when added to a particular environment decreases the rate of attack of that environment on material. They are generally mixed with the protective coating materials.

There are numerous protective coating material available in the market *e.g.* epoxy, polyurethane, *etc.* For resistance to corrosion control over metal by various chemicals, the coating must be completely inert to prevent permeation of the chemical and moisture. Polymeric organic coating of polyurethane combined with organic inhibitors serve this purpose well because their film properties are superior and chemical resistance is excellent with high degree of impermeability. This coating have a wide scope in prevention of corrosion for a period of 9 to 40 years.

[†]Department of Chemistry, Principal Government College, Depalpur, India.

Vol. 19, No. 2 (2007)

The present study, therefore, deals with the protection of steel and aluminium by applying protective coating of polyurethane (A+B) mixed with organic inhibitors like resorcinol and furfural.

It has been observed that it is better to apply a good primer like redoxide, as a first layer followed by minimum two coats of polyurethane (A+B) *i.e.* double coating mixed with organic inhibitors.

EXPERIMENTAL

All the chemical used were of AR grade and their solutions were prepared in double distilled water. Two types of metal strips mild steel and aluminium were tested for chemical resistance. The composition of mild steel was 0.15 to 0.3 % C, 0.3 %, S, 1.0 % Mn, 0.5 % P, 0.03 % Si and the remaining is iron. The composition of aluminium strip was 0.130 % Si, 0.520 % Fe, 0.068 % Mn, 0.021 % Mg, 0.010 % Cu and 99.25 % Al.

The strips of steel and aluminium were cut into the size of 10×2.5 cm. They were first washed with soap water, cleaned by brushing and rubbing by sand paper and finally washed with water. These strips were dried in oven at 100°C for 24 h.

Initially both types of strips were uniformly coated with redoxide primer and dried. Now these strips were uniformly coated with two packs polyurethane mixed with different organic inhibitors either resorcinol or furfural. In both the cases the thickness of coating was taken as 100 microns which is found to be ideal.

Immersion test: Each type of dried strips was taken for immersion test. strips suspended by a glass hook, were immersed in 150 mL of tested solution at $303 \pm 1^{\circ}$ C in 250 mL capacity corning glass beakers for a period of 24 h. After the exposure period the test specimens were restudied.

Each type of dried strips was taken for immersion test in: (1) dilute acid, (2) different concentrations of HCl, (3) different concentrations of HNO₃, (4) different concentration of H_2SO_4 , (5) different concentration of alkali solutions, (6) different concentrations of salt solutions, (7) diffrent organic solvents, (8) different commercial detergents and (9) strips were also tested in the atmosphere of different gases for one month.

RESULTS AND DISCUSSION

The results of immersion test are given in the Tables 1-15.

Durability test over steel and aluminium coated with: (1) primer (redoxide), resorcinol (organic inhibitor) and polyurethane (A+B) coating (2) primer (redoxide), furfural, (organic inhibitor) and polyurethane (A+B) coating.

1172 Agrawal et al.

Asian J. Chem.

Resorcinol as a inhibitor

The primer coated strips were coated with two pack polyurethane system mixed with rersorcinol. Above coating offered complete resistance to dilute acids in both the cases (Table-1).

TABLE-1									
IMMERSION IN DILUTE ACIDS									
Inhibitor	Metal	Dil. HCl	Dil. HNO ₃	Dil. H ₂ SO ₄					
Resorcinol	Steel	NC	NC	NC					
	Aluminium	NC	NC	NC					
NO N.									

NC = Not corroded.

While the strips were dipped in different concentration of concentrated HCl strips corroded in 80 % and above as shown in Table-2.

	TABLE-2									
IMMERSION IN DIFFERENT CONCENTRATION OF HCI										
Inhibitor Metal	1.2 N	2.4 N	3.6 N	4.8 N	7.2 N	9.6 N	12 N			
minutor	Metal	HCl	HCl	HCl	HCl	HCl	HCl	HCl		
Resorcinol	Steel	NC	NC	NC	NC	NC	F	F		
	Aluminium	NC	NC	NC	NC	NC	F	F		
NO N.	11F F	1.1								

NC = Not corroded; F = Failed.

When polyurethane coated strips were dipped in concentrated nitric acid, 60 % and above concentrations of nitric acid have corrosive effect in both the case (Table-3).

TABLE-3									
IMMERSION IN DIFFERENT CONCENTRATION OF HNO3									
Matal	1.6 N	3.2 N	4.8 N	6.4 N	9.6 N	12.8 N	16 N		
Metal	HNO ₃	HNO ₃	HNO ₃	HNO ₃	HNO ₃	HNO ₃	HNO ₃		
Steel	NC	NC	NC	NC	F	F	F		
Aluminium	NC	NC	NC	NC	F	F	F		
	Metal Steel	Metal 1.6 N HNO ₃ Steel NC	MERSION IN DIFFERENT C Metal 1.6 N 3.2 N HNO ₃ HNO ₃ Steel NC NC	MERSION IN DIFFERENT CONCEN Metal 1.6 N 3.2 N 4.8 N HNO ₃ HNO ₃ HNO ₃ Steel NC NC NC	MERSION IN DIFFERENT CONCENTRATION Metal 1.6 N 3.2 N 4.8 N 6.4 N HNO3 HNO3 HNO3 HNO3 HNO3 Steel NC NC NC NC	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Metal 1.6 N HNO ₃ 3.2 N HNO ₃ 4.8 N HNO ₃ 6.4 N HNO ₃ 9.6 N HNO ₃ 12.8 N HNO ₃ Steel NC NC NC F F		

NC = Not corroded; F = Failed.

When steel and aluminium strips were dipped in different concentrations of concentrated H_2SO_4 then the strips coatings offered resistance upto 40% in both the cases (Table-4).

IM	TABLE-4 IMMERSION IN DIFFERENT CONCENTRATION OF H ₂ SO ₄								
Inhibitor	Metal			10.8 N H ₂ SO ₄					
Resorcinol	Steel	NC	NC	NC	NC	F	F	F	
	Aluminium	NC	NC	NC	NC	F	F	F	

NC = Not corroded; F = Failed.

Both the strips offred resistance in all the concentrations and saturated solution of alkalies and salt solution (Tables 5 and 6).

Studies in Protective Coatings of Metals 1173

	TABLE-5												
IMMERSION IN ALKALIS													
Inhibitor	Metal]	NaOF	H (%)			KOH (%)					
	Wietai	10	20	30	40	50	Sat	10	20	30	40	50	Sat.
Resorcinol	Steel	NC							NC				
	Al	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
TABLE-6													
		ъл	MED	STON		AIT	SOI	UTI	N				

IMMERSION IN SALT SOLUTION													
Inhibitor	Metal	NaCl (%) 10 20 30 40 50 Sat 10					KCl (%)						
		10	20	30	40	50	Sat	10	20	30	40	50	Sat.
Resorcinol	Steel	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Al	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

NC = Not corroded.

On immersion in different organic solvents acetone, chloroform, carbon tetra chloride and toluene have corrosive effect on strips in both the cases (Table-7).

TABLE-7
IMMERSION IN ORGANIC SOLVENTS

IMMERSION IN ORGANIC SOLVENTS										
Organic solvent	Inhibito	r resorcinol	Inhibit	or furfural						
	Steel	Aluminium	Steel	Aluminium						
Acetone	F	F	F	F						
Aniline	NC	NC	NC	NC						
Chloroform	F	F	NC	NC						
Benzene	NC	NC	NC	NC						
Carbon tetra chloride	F	F	NC	NC						
Ether	NC	NC	NC	NC						
Toluene	F	F	F	F						
	D 1 1									

NC = Not corroded; F = Failed.

Strips kept in commercial detergents they did not have any corrosive effect on coating as shown in Table-8.

	IABLE-8										
IMMERSION IN DIFFERENT DETERGENTS											
Detergents	Inhibito	Resorcinol	Inhibit	or Furfural							
(Brands)	Steel	Aluminium	Steel	Aluminium							
Surf	NC	NC	NC	NC							
Nirma	NC	NC	NC	NC							
Rin	NC	NC	NC	NC							
Ariel	NC	NC	NC	NC							
Wheel	NC	NC	NC	NC							

TABLE 8

NC = Not corroded.

When the strips were kept in gases only sulphur dioxide had the corrosive effect in both the cases (Table-9).

1174 Agrawal et al.

Asian J. Chem.

	Т	ABLE-9								
IMMERSION IN GASES										
Gases	Inhibito	r Resorcinol	Inhibite	or Furfural						
Gases	Steel	Aluminium	Steel	Aluminium						
Chlorine	NC	NC	NC	NC						
Hydrogen chloride	NC	NC	NC	NC						
Ammonia	NC	NC	NC	NC						
Hydrogen sulphide	NC	NC	NC	NC						
Nitrogen dioxide	NC	NC	NC	NC						
Sulphur dioxide	F	F	NC	NC						
	E 1 1									

NC = Not corroded; F = Failed.

Furfural as a inhibitor

The primer-coated strips were coated with two pack polyurethane system mixed with furfural. Above coating offered complete resistance to dilute acids in both the cases (Table-10).

	TABLE-10 IMMERSION IN DILUTE ACIDS									
Inhibitor	Metal	Dil. HCl	Dil. HNO ₃	Dil. H ₂ SO ₄						
Furfural	Steel	NC	NC	NC						
	Aluminium	NC	NC	NC						
NG N	1 1									

NC = Not corroded.

While the strips were dipped in different concentration of concentrated HCl strips corroded in 80 % and above as shown in Table-11.

	TABLE-11									
IM	IMMERSION IN DIFFERENT CONCENTRATION OF HCI									
Inhibitor Metal	1.2 N	2.4 N	3.6 N	4.8 N	7.2 N	9.6 N	12 N			
minibitor	Metal	HC1	HC1	HCl	HCl	HCl	HCl	HCl		
Furfural	Steel	NC	NC	NC	NC	NC	F	F		
	Aluminium	NC	NC	NC	NC	NC	F	F		
NG N		.1 1								

NC = Not corroded; F = Failed.

When PU coated strips were dipped in concentrated nitric acid, 60 % and above concentrations of nitric acid have corrosive effect in both the case (Table-12).

IMMERSION IN DIFFERENT CONCENTRATION OF HNO3										
Inhihitan	Metal	1.6 N	3.2 N	4.8 N	6.4 N	9.6 N	12.8 N	16 N		
Inhibitor		HNO ₃	HNO ₃	HNO_3	HNO ₃	HNO ₃	HNO ₃	HNO ₃		
Furfural	Steel	NC	NC	NC	NC	F	F	F		
	Aluminium	NC	NC	NC	NC	F	F	F		
NC = Not corroded; F = Failed.										

TABLE-12 MMERSION IN DIFFERENT CONCENTRATION OF HNO

When steel and aluminium strips were dipped in different concentrations of concentrated H_2SO_4 then the strips coating failed at 80 % and above in both the cases (Table-13).

TABLE-13										
IMMERSION IN DIFFERENT CONCENTRATION OF H ₂ SO ₄										
Inhibitor	Metal	3.6 N	7.2 N	10.8 N	14.4 N	21.6 N	28.8 N	36 N		
		H_2SO_4								
Furfural	Steel	NC	NC	NC	NC	NC	F	F		
	Aluminium	NC	NC	NC	NC	NC	F	F		

NC = Not corroded; F = Failed.

Both the strips offred resistance in all the concentrations of alakalies and salt solution (Tables 14 and 15).

TABLE-14
IMMERSION IN AKLALIS

Inhibitor	Metal ·		NaOH (%)						KOH (%)					
		10	20	30	40	50	Sat.	10	20	30	40	50	Sat.	
Furfural	Steel	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	
	Al	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	

NC = Not corroded.

TABLE-15 IMMERSION IN SALT SOLUTION

Inhibitor	Metal		NaCl (%)						KCl (%) 10 20 30 40 50 Sat.				
		10	20	30	40	50	Sat.	10	20	30	40	50	Sat.
Furfural	Steel	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Al	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
NC Net comeded													

NC = Not corroded.

It is concluded that for steel and aluminium organic inhibitors like resorcinol and furfural act as a good organic inhibitor. It is also seen that it is better to apply a good primer like red oxide and then to apply minimum two coats of polyurethane_(A+B). A film thickness of 100 microns was found to be an ideal.

In general, the strips offered excellent resistance with furfural inhibitor on comparison with resorcinol inhibitor when mixed with polyurethane_(A+B) against water, dilute acids, alkalies, salt solutions, gases, *etc*. The scratch hardness, flexibility and drying time were more or less same for all the strips. The inhibition action of these compounds seems to be due to their adsorption on the metal surface, hence blocking the available area for corrossion⁹⁻¹¹.

On comparison with different coating, we find that polyurethane coating are highly suitable as maintenance coatings. Their film properties are superior and chemical resistance is excellent. Polyurethane coating are not only resistant towards chemical corrosion but they also provide a barrier which prevent or control the corrosion reaction through the film. Polyurethane coatings are non-conductor of electricity experimentally as well as theoretically. Another requirement is that the coating should be impermeable to air, moisture, water, vapour, *etc.* Polyurethane coating serve this 1176 Agrawal et al.

Asian J. Chem.

purpose well. Polyurethane coating have all the characteristics for an effective coating and therefore, the future of polyurethane coating is very bright. Polyurethane coating are designed for tough exposures and they prevent corrosion and act as water proofing. They resists chemicals looking to corrosion resistance offered for a longer period of time. Polyurethane coating are more economical justifying their price and application and their efficiency increases on mixing with inhibitors.

ACKNOWLEDGEMENTS

The authors are thankful to the institutions CAT Indore, RRL Bhopal, MAPCOST Bhopal, MS University, Baroda and INSDOC, New Delhi for providing reference materials.

REFERENCES

- 1. J.D. Talati, J.M. Pandya, B.M. Patel and H.S. Vyas, Indian J. Appl. Chem., 35, 55 (1972).
- 2. J.D. Talati and J.M. Pandya, J. Electrochem. Soc. (India), 26, 29 (1976).
- J.D. Talati, G.A. Patel and D.K. Gandhi, *Corrosion Note*, 40, 89 (1984).
 J.M. Pandya and J.M. Darji, *Bull. Electrochem.*, 13, 337 (1977).
- 5. R.S. Choudhary, P.N.S. Yadav and C.V. Agarwal, J. Electrochem. Soc. (India), 29, 125 (1980).
- 6. P.N.S. Yadav and R. Wadhwani, Himal. Chem. Pharm. Bull., 9, 1 (1992).
- 7. P.N.S. Yadav and R. Wadhwani, Trans. SAEST, 28, 20 (1993).
- 8. P.N.S. Yadav and A.K. Singh, Asian J. Chem., 11, 580 (1999).
- 9. A.R. Ismail, M.M. Hefny, A. El-Kot and M.S. El-Basiouny, Asian J. Chem., 4, 469 (1992).
- 10. H.R. Hembarg and D. Short, Corros. Sci., 14, 597 (1974).
- 11. R.T. Vashi and V.A. Champaneri, Asian J. Chem., 10, 280 (1998).

(*Received*: 2 December 2005; *Accepted*: 1 September 2006) AJC-5071

1st GEORGIAN BAY INTERNATIONAL CONFERENCE **ON BIOINORGANIC CHEMISTRY**

22 - 26 MAY 2007

PARRY SOUND, ONTARIO, CANADA

Contact: Martin Stillman E-mail: martin.stillman@uwo.ca