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The three-dimensional polya cycle indices for the natural
actions of the symmetry group of the small fullerene C24 and
big fullerene C150 over the set of vertices, edges and faces are
computed.
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INTRODUCTION

In this section we describe some notations which will be kept through-
out. Each molecule has a set of symmetry operations that describes the
molecule's overall symmetry. This set of operations define the point group
of the molecule. A chemical graph is a simple graph (V, E) all whose nodes
are labeled by means of chemical elements1,2.

It is easy to see that all unitary matrices commuting with the adjacency
matrix A of a molecular graph form a group H which is called the Hamilto-
nian group of a graph. The elements of H is defined as a generalized
symmetry operator. In a real vector space, these matrices are orthogonal. It
is well known that the symmetry operators in the point group of a molecule
always commute with its Hamiltonian operator. Thus the group H of the
molecular graph must contain the point group of the graph3.

For a permutation σ on n objects, the corresponding permutation
matrix is an n × n matrix Pσ given by Pσ = [xij], xij = 1 if i = σ (j) and 0
otherwise. We can see that PσPτ = Pσ τ , for any two permutations σ and τ on
n objects and so the set of all n × n permutation matrices is a group isomor-
phic to the symmetric group Sn on n symbols.

It is a well-known fact that a permutation σ of the vertices of a graph
belongs to its automorphism group if it satisfies AAPPt =σσ , where A is
the adjacency matrix of graph under consideration. Set Aut(G) = {σ1, σ2,···,
σm}. The matrix SG = [sij], where sij = σi(j) is called a solution matrix for G.
Clearly, for computing the automorphism group of G, it is enough to calcu-
late a solution matrix for G.

Lemma 1: (Ashrafi4) Suppose A = [aij] and B = [bij] are two matrices
and Pσ is a permutation matrix. If B = tPP σσ , σ(i) = r and σ (j) = s, then ars

= bij.



Proof: Suppose Pσ = [yij], then Ui = [yil, ···, yim] is the ith row of Pσ.
Since σ(i) = r, yir = 1 and for j ≠ r, yij = 0. This shows that UiA is the rth row
of A. We now assume that Tj is the jth column of (Pσ)t. Since σ(j) = s, yjs = 1
and for i ≠ s, yij = 0. Therefore, bij = ars, proving the lemma.

Corollary: Let A = [aij] be the adjacency matrix of a weighted graph
and σ be a permutation such that A = PσA(Pσ)t and σ maps i1 → j1, i2 → j2,
···, it → jt. Then we have:

ai1i1 .  .  .  ai1it     aj1j1 .  .  .  aj1jt 
.     .  .  .  .     .     .  .  .  . 
.     .  .  .  .        =    .     .  .  .  . 
.     .  .  .  .     .     .  .  .  . 
aiti1 .  .  .  aitit     ajtj1 .  .  .  ajtjt 

Using Lemma 1 and its corollary, we can write a MATLAB program to
compute the automorphism group of weighted graphs5. This MATLAB
Program will be used in the next section for computing the automorphism
group of fullerenes C20 and C150. Let G be the Euclidean graph of a
molecule and A = Aut(G). Since for every vertex υ ∈ V (G) and every α ∈
A, deg α(υ) = deg υ, we can improve the MATLAB program5 of for
computing the symmetry of molecules. In what follows, we write this
program.

A MATLAB program for computing symmetry of a molecules

function s=permutation1(a)
n=length(a);
b=sort(a);
for i=1:n

t=[],
for j=1:n
  if min(b(:,i)= =b(:,j))= =1
      t=[t j];
     end
end
p(i,1:length(t))=t;

end
s=p(1,:)’;
s(s= =0)=[];

for i=2:n
m=size(s);
w=[];
v=p(i,:);
v(v= =0)=[];
k=1:n;
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k(v)=[];
for j=1:m(1)
   t=1:n;
   t([s(j,:) k])=[];
    for r=t
        if min(min(a([s(j,:) r],[s(j,:) r])= =a(a:i,1:i)))= =1

w=[w;s(j,:) r];
         end
     end
end
s=w;

end

Let G be a group and X a nonempty set. An action of G on X is denoted
by GX and X is called a G-set. It induces a group homomorphism ϕ from G
into the symmetric group SX on X, where ϕ(g)x = gx for all x ∈ X. The
orbit of x will be indicated as xG, the stabilizer of x by Gx. The set of all G-
orbits will be denoted by G\\X := {xG | x ∈ X}.

Let G be a permutation group. The cycle index of G acting on X is the
polynomial Z(G, X) over Q in the indeterminates x1, x2, ··· xt, t = |X|, de-

fined by Z(G, X) = ∑
∈

=Π
Gp

)p(ci
i

t
1i x

|G|

1
in which (c1(p), ···, ct(p)) is the cycle

type of the permutation p ∈ G. All elements of a conjugacy class have the
same cycle type, so the cycle index can be rephrased in the following way:
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where C is the set of all conjugacy classes C of G with representatives
gC∈C.

Suppose a group G is acting on sets V, E and F of vertices, edges and
faces, respectively. Then G acts in a natural way on the disjoint union V 
E  F. Suppose |V| = r, |E| = s and |F| = t. The 3-dimensional cycle index is
given by

∑
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where (a1(p), ···, ar(p)), (b1(p), ···, bs(p)) and (c1(p), ···, ct(p)), are the cycle
type of the permutation corresponding to p and to action of p on V, E and F,
respectively. These cycle indices are the basic tools for applying polya
theory6 to the isomer count.

In this paper, our notation is standard and taken mainly from the work
of Cameron7, Huppert8 and Robinson9. Computations were carried out with
the aid of GAP10 and MTLAB11. We encourage reader to consult the work
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of Fripertinger12,13 for discussion and background material about the
3-dimensional cycle index.

3D cycle indices of some fullerenes

The recent discovery of the C60 “Buckminsterfullerene” and a host of
other cage carbon molecules has ushered in a new branch of chemistry
with quite mind-boggling potential. The arrangement of the carbon atoms
and their relative positions at vertices in these structures trace out some
interesting polyhedra.

Fullerenes consist essentially of hexagonal carbon rings (benzene)
linked to each other partly via pentagons. The relationship between the
number of spices (a, carbon atoms) and hexagon carbon rings (n) (penta-
gon rings always number 12) is given by a = 2(n + 10). This will indicate
the fullerenes theoretically possible. Although each of these possibilities
does represent a definite polyhedron, a large number of them have rela-
tively low symmetry. Using these six dimensional cycle indices returning
to the fullerene C24 the group Z2 × S4 acting on the disjoint union of the sets
of all vertices, edges and faces. When denoting the families of indeterminates
for these actions by the following symbols υi, ei and fi we computed:
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We now consider, the fullerene C150 with dihedral group D10 as its point
group. This group acts on the disjoint union of the sets of all vertices,
edges and faces. We computed:
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Using these 3-dimensional cycle indices we can compute the number
of different simultaneous colouring of all vertices, edges and faces with k1,
k2 and k3 colours by replacing each variable υi by k1, ei by k2 and fi by k3.
For k1 = k2 = k3 = 2 the number of different colouring is ≈ 1.2 × 10136.

Consider a fullerene graph G which its carbon atoms labeled by inte-
gers 1, 2, ..., n. We associate to any bond of G, an ordered pair (i,j), 1 ≤  i,j
≤ n. Similarly, we associate to every face of G, a 5- or 6-tuple of these
natural numbers. We now write a GAP program to compute the three-
dimensional cycle indices for fullerenes with a given point group. In our
GAP program, A is a solution matrix for the symmetry of fullerene under
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consideration, BB is the set of all ordered pairs related to the bond of G and
AA is the set of all 5- or 6-tuples related to the faces of G.

A GAP program for computing the 3-dimensional cycle index of
fullerenes

Q:=[]; T:=[];
for i in A do

Add(Q,PermListList(A[1],i));
od;
GG:=Group(Q);
e:=Elements(GG);
F:=[];FF:=[];HH=[];k:=1;

for t in e do
    for i in AA do
       for j in i do

AddSet(F, jt);
       od;
       Add(FF,F);
       F:=[];
    od;
   h:=PermListList(FF,AA);
    Add(HH,h); FF:=[];
od;
H:=Elements(Group(HH));
F1:=[];FF1:=[];H1:=[];

for t in e do
for i in BB do for
j in i do
AddSet(F1, jt);

   od;
   Add(FF1,F1); F1:=[];
od;
h1:=PermListList(FF1,BB);
Add(H1,h1); FF1:=[]
od;
w:=[];ww:=[];
for i in [1..20] do

Print(”e[”,i);Print(”]=”,e[i],””);
Print(”H[”,i);Print(”]=”,H[i],””);
Print(”H1[”,i);Print(”]=”,H1[i],””);

od;
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