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Thethree-dimensional polyacycleindicesfor the natural
actions of the symmetry group of the small fullerene C,, and
big fullerene Ci5 over the set of vertices, edges and facesare
computed.
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INTRODUCTION

In this section we describe some notations which will be kept through-
out. Each molecule has a set of symmetry operations that describes the
molecule's overall symmetry. This set of operations define the point group
of themolecule. A chemical graphisasimplegraph (V, E) al whose nodes
are labeled by means of chemical elements*2

Itiseasy to seethat all unitary matrices commuting with the adjacency
matrix A of amolecular graph form agroup H which iscalled the Hamilto-
nian group of a graph. The elements of H is defined as a generalized
symmetry operator. In areal vector space, these matrices are orthogonal. It
iswell known that the symmetry operatorsin the point group of amolecule
always commute with its Hamiltonian operator. Thus the group H of the
molecular graph must contain the point group of the graph®.

For a permutation ¢ on n abjects, the corresponding permutation
matrix isan n x n matrix Ps given by P; = [x;], xj = 1Lif i =c (j) and O
otherwise. We can seethat P;P; = P, -, for any two permutationsc and T on
n objects and so the set of all n x n permutation matricesisagroup isomor-
phic to the symmetric group S, on n symbols.

It isawell-known fact that a permutation ¢ of the vertices of a graph
belongs to its automorphism group if it satisfies PLAP, = A , where A is
the adjacency matrix of graph under consideration. Set Aut(G) ={ o1, 62,*,
Om}. Thematrix Sg =[s;], where s; = oi(j) is called a solution matrix for G.
Clearly, for computing the automorphism group of G it isenough to calcu-
late a solution matrix for G

Lemma 1: (Ashrafi*) Suppose A = [a;] and B = [b;] are two matrices
and P, isapermutation matrix. If B= P_P! , o(i) =rand ¢ (j) = s, then as
= bij.
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Proof: Suppose P, = [yi], then U; = [yi, -+, Vin] is the i row of P..
Sinceo(i) =r,yi = Landforj #r,y; = 0. Thisshowsthat UA isthe r'" row
of A. We now assumethat T; isthe ™ column of (P,)". Sincec(j) =s,y;s=1
and for i # s, y;; = 0. Therefore, by = as, proving the lemma.

Corollary: Let A = [a] be the adjacency matrix of a weighted graph
and ¢ be a permutation such that A = P,A(Ps)' and 6 mapsii— ji, i2—
-, it— ji. Then we have:

iy . . . Qi Azjr . . . Gt

Sidy . . . it A . . . A

Using Lemmal anditscorollary, we can writeaMATLAB programto
compute the automorphism group of weighted graphs’. This MATLAB
Program will be used in the next section for computing the automorphism
group of fullerenes Cy and Ciso. Let G be the Euclidean graph of a
moleculeand A = Aut(G). Sincefor every vertex v e V (G) and every a. €
A, deg o(v) = deg v, we can improve the MATLAB program® of for
computing the symmetry of molecules. In what follows, we write this
program.

A MATLAB program for computing symmetry of a molecules

function s=permutationl1(a)
n=length(a);
b=sort(a);
for i=1:n

=[],

for j=1:n

if min(b(:,)==b(:,)))==1
t=[tj];
end

end

p(i,1:length(t))=t;
end
s=p(1,:)’;
s(s==0)=[I;

for i=2:n

m=size(s);

w=[];

v=p(i,:);

v(v==0)=[[;

k=1:n;
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k(v)=l;
for j=1:m(1)
t=1.n;
t([sG.:) kD=1
for r=t
if min(min(a([s(j,:) r1,[s(,:) r])==a(ai,l:i)))==
w=[w;s(j,:) rl;
end
end
end
S=w;
end

Let G beagroup and X anonempty set. An action of G on X isdenoted
by Gx and X iscalled aG-set. It induces agroup homomorphism ¢ from G
into the symmetric group Sx on X, where o(g)x = gx for al x € X. The
orbit of x will beindicated as x®, the stabilizer of x by G,. The set of all G-
orbits will be denoted by G\\X := {x®|x € X}.

Let G be apermutation group. The cycleindex of G acting on X isthe
polynomia Z(G, X) over Q in the indeterminates Xy, Xz, -+ X, t = |[X|, de-

ci(p)
fined by Z(G X) = |G|ZGHit=1Xi P inwhich (ci(p), -, c(p)) isthe cycle
pe

type of the permutation p € G. All elements of a conjugacy class have the
same cycletype, so the cycleindex can be rephrased in the following way:

2(G.X)= = 3| CILx¢ )
|Gl&Z

where C is the set of all conjugacy classes C of G with representatives

Jce C.

Suppose agroup G is acting on setsV, E and F of vertices, edges and
faces, respectively. Then G actsin anatural way on the disjoint unionV U
E U F. Suppose |V|=r, |E| = sand |F| = t. The 3-dimensional cycleindex is
given by

1
Z,(GVUEUF) =_Znif:10?i(v)n_t:lfici(p)
|G |peG

where (a(p), -+, &(p)), (0a(p), -+, b(p)) and (cu(p), -, &(p)), are the cycle
type of the permutation corresponding to p andto action of ponV, Eand F,
respectively. These cycle indices are the basic tools for applying polya
theory® to the isomer count.

In this paper, our notation is standard and taken mainly from the work
of Cameron’, Huppert® and Robinson®. Computationswere carried out with
the aid of GAP* and MTLAB™. We encourage reader to consult the work
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of Fripertinger'®*® for discussion and background material about the
3-dimensional cycle index.

3D cycleindices of some fullerenes

The recent discovery of the Cg “Buckminsterfullerene” and a host of
other cage carbon molecules has ushered in a new branch of chemistry
with quite mind-boggling potential. The arrangement of the carbon atoms
and their relative positions at vertices in these structures trace out some
interesting polyhedra.

Fullerenes consist essentially of hexagonal carbon rings (benzene)
linked to each other partly via pentagons. The relationship between the
number of spices (a, carbon atoms) and hexagon carbon rings (n) (penta-
gon rings always number 12) is given by a= 2(n + 10). Thiswill indicate
the fullerenes theoretically possible. Although each of these possibilities
does represent a definite polyhedron, a large number of them have rela-
tively low symmetry. Using these six dimensional cycle indices returning
to thefullerene C,4 the group Z, x S, acting on the digjoint union of the sets
of al vertices, edges and faces. When denoting the families of indeterminates
for these actions by the following symbolsv;, e and f; we computed:

f =2l 3 4 3uBuBeleSf A2 1 ulelelf 15 1 Bulelelf?

+6v3e,eif ) +8udelesfs® + 8uge,eif g + Buyelf, )’
+ 30PN +uelf1®

We now consider, the fullerene Ciso with dihedral group Dy, asits point
group. This group acts on the digoint union of the sets of all vertices,
edges and faces. We computed:

_ A 150 ,77¢ 225 8,.71 .11 33¢ 11¢ 107 30,2 415¢ 45
f =010e/ .2 + 2030, e e, Y +vilelerfs

+ 3uPuTeRel5f 1107 4 3uPellet 55 4 5yl e, f12
+ SZulfe,elehf 22 + VIV 2 + vl e elelf ul®
Using these 3-dimensional cycle indices we can compute the number
of different simultaneous colouring of all vertices, edgesand faceswith k;,
k> and ks colours by replacing each variable v; by ki, & by k; and f; by k.
For ki = k, = ks = 2 the number of different colouringis= 1.2 x 10**°,
Consider afullerene graph G which its carbon atoms labeled by inte-
gers1, 2, ..., n. We associate to any bond of G, an ordered pair (i,j), 1< i,
< n. Similarly, we associate to every face of G, a 5- or 6-tuple of these
natural numbers. We now write a GAP program to compute the three-
dimensional cycle indices for fullerenes with a given point group. In our
GAP program, A is a solution matrix for the symmetry of fullerene under
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consideration, BB isthe set of all ordered pairsrelated to the bond of G and
AA isthe set of al 5- or 6-tuplesrelated to the faces of G

A GAP program for computing the 3-dimensional cycle index of
fullerenes
Q=[]; T:=[];
foriinAdo
Add(Q,PermListList(A[1],i));
od;
GG:=Group(Q);
e:=Elements(GG);
F:=[1;FF:=[];HH=[];k:=1;
fortinedo
foriinAA do
forjinido
AddSet(F, j9);
od;
Add(FFF);
F=(l;
od;
h:=PermListList(FFAA);
Add(HH,h); FF:=[];
od;
H:=Elements(Group(HH));
F1:=[];FFL:=[];H1:=[];
fortinedo
foriin BB do for
jinido
AddSet(F1, j9);
od;
Add(FF1,F1); F1:=[];
od;
hl:=PermListList(FF1,BB);
Add(H1,h1); FF1:=[]
od;
w=[]ww:=[];
foriin[1..20] do

od;
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