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Correlations for estimation of the aqueous solubility (ln S) of

aliphatic alcohols are proposed. The high-order MCI (molecular

connectivity index) based quantitative structure-property relationship

(QSPR) models are obtained by stepwise regression and support vector

regression. On the basis of the data set of 50 aliphatic alcohols, the

optimal linear model obtained by stepwise regression has a correlation

coefficient of 0.990 and an average absolute error of 0.149 ln units and

is comparable with the existing models. The optimal nonlinear model

obtained by support vector regression has a correlation coefficient

of 0.996 and an average absolute error of 0.116 ln units and is better

than the existing models. The new models are predictive and easy to

apply for it requires only connectivity indices in the calculations and

does not require any experimental physicochemical properties in the

calculation.

Key Words: QSPR, High-order molecular connectivity index,

Support vector regression, Aqueous solubility, Aliphatic alcohols.

INTRODUCTION

Modeling of aqueous solubility of organic chemicals from molecular

structure is a significant activity for aqueous solubility is particularly

important physicochemical property of organic chemicals and at the same

time is a property which is difficult to measure experimentally. Reliable

computational methods to predict aqueous solubility have been the focus

of relative researches in recent years. Comprehensive reviews on devel-

oped water solubility computational methods, main issues that affect the

applicability of different techniques and aspects of emerging scientific

understanding that may lead to breakthroughs in the computational model-

ing of aqueous solubility have been reported recently1-3.

There are a large number of reports relating to the estimation of this

highly important property, which can be divided into two main groups based

on model parameters. The first approach4-8 is to build models from more
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easily measured physicochemical properties, such as melting point, boil-

ing point, molar volume, partition coefficient, chromatographic retention

time, etc. The other method is based on the information from the mol-

ecules of the organic chemicals which can be further divided into two

classes, one is group contributions method9-12 and the other is QSPR

approach13-37.

As for the model method, there are also two main groups, one is linear

method and the other is nonlinear method. Representatives of the two

methods are multiple linear regression and neural networks38. Recently, a

novel type of modeling method, support vector regression, has been adopted

as a popular method in QSPR research.

The molecular connectivity indices which proposed about 30 years

ago, have been successfully used in the calculations of various

physiochemical properties of organic chemicals especially in the applica-

tions to computational molecular design studies recently39-43. In the previ-

ous works, correlations of aqueous solubility using molecular connectivity

indices and other descriptors have been studied and demonstrated the pos-

sibility of molecular connectivity indices in modeling aqueous solubility.

Zhong and Hu29 have developed a nonlinear model with R2 of 0.885 to

predict the aqueous solubility of organic compounds, with three molecular

connectivity indices involved. Wang and Hu35,37 proposed the MCI based

linear models to predict aqueous solubility of different chemicals.

In this study, we first use high-order molecular connectivity indices to

develop linear model that relate the structures of a group of 50 aliphatic

alcohols to their aqueous solubility and obtain the new model with the

same accuracy comparing with the existing models, then use the five

molecular descriptors to build the nonlinear model by the support vector

regression and obtain the new model with the higher accuracy.

EXPERIMENTAL

50 Aliphatic alcohols that has been studied by Amic22 and Zakarya28

are adopted as data set and listed in Table-3. This data set consists of

different types of structures: aliphatic (linear and branched), primary,

secondary and tertiary carbon. The water solubility used is expressed in

ln S and their values ranges from -8.2208 for decanol up to 0.0953 for

1-butanol.

Methods

High-order molecular connectivity index and stepwise regression:

The simple and valence connectivity indices defined by earlier workers44-50

that used in this work can be expressed in the following equation:
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where m is the order of the connectivity index, k denotes a continuous path

type of fragment, which is divided into paths (p), clusters (c), etc., q

denotes connectivity index is simple or valence or other types; nm is the

number of the relevant paths; δi
q  is the connectivity index.

In this work, for each chemical, the values of the connectivity indices

up to third order are calculated using the vertex adjacency matrix. The

simple connectivity index (δ) the valence connectivity index (δv) used in

this study are summarized in Table-1.

TABLE-1 
CONNECTIVITY INDEX VALUES OF GROUPS USED IN THIS WORK 

Group δ δv Group δ δv 

-CH3 1 1 =CH2 1 2 

-CH2- 2 2 =CH- 2 3 

>CH- 3 3 =C< 3 4 

>C< 4 4 -OH 1 5 

 

The detailed equations used in this work for the simple and valence

molecular connectivity indices for zeroth, first, second and third orders are

listed as follows:
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After the calculation of 10 molecular connectivity indices, stepwise

regression using MATLAB Statistics Toolbox are used in choosing the vari-

ables and fitting the experimental data of the data set.

The average absolute error (AAE) and the root-mean-square error

(RMSE) were calculated as the following to compare with the existing

model.

The AAE was calculated as

N

SlogSlog
AAE

expcal∑ −
= (12)

The RMSE was calculated as

( )
N

SlogSlog
RMSE

2

expcal∑ −
= (13)

where N is the number of compounds.

Support vector regression:  The support vector machine, which

introduced by Vapnik51,52, has gained popularity both in pattern recognition

and in QSPR/QSAR in recent years for its outstanding features and attrac-

tive principle of structure risk minimization. The principle of support

vector regression is to map the input data x into a higher-dimensional

feature space F and then to do regression between the target output z and

the transformed x. The detailed description of support vector regression

can be found in monographs of Vapnik51,52.

Given a data set, { } RR)z,x(,)z,x(),z,x(D n
ll2211 ×⊂= L , where

n
i Rx ∈  is an input and Rz i ∈  is a target output, the standard form of

SVR−ε  can be expressed in the following form:
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ii =≥ξξ

The dual form of function (14) which has the following form is solved

to get the Lagrange multiplier 
*,αα :
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Mercer's condition.

Thus the decision function can be obtained with the following form:
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where  b can be determined according to Karush-Kuhn-Tucker conditions

as the following form

∑
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In this work, the Gaussian radical basis function is used as the kernel

in regression.

RESULTS AND DISCUSSION

Amic22 performed the structure-water solubility modeling of aliphatic

alcohols using the weighted path numbers and Zakarya28 modeled the

structure-water solubility of aliphatic alcohols using the multifunctional

autocorrelation method. They both got the satisfying results. Linear

predictive QSPR models that based on high-order molecular connectivity

indices are proposed in this work to correlate the aqueous solubility of 50

aliphatic alcohols and the results are comparable with the existing models

and the nonlinear model that developed by support vector regression has

the better statistical results than the existing models.

Stepwise regression was used to develop the linear model for the

prediction of aqueous solubility using the molecular connectivity index.

The coefficients of the best correlation model for aqueous solubility of the

50 aliphatic alcohols used in this study are shown in Table-2 and eqn. 14.

The best linear model contains 5 indices with different meanings.
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TABLE-2 
THE BEST CORRELATION MODEL OF lnS FOR 50 COMPOUNDS 

n Descriptor Coefficient t-test 

0 Intercept 8.1229          – 

1 χ1
 -7.5933 -6.5015 

2 
v1χ  5.2500 4.8608 

3 
v2χ  -0.7004 -3.1738 

4 
v
p

3χ  0.4424 3.5451 

5 c
3χ  0.4964 2.2567 

 

The χ1  and v1χ  that reflect the size of the molecule are the most

important descriptors, as can be seen by their high t-test values. This

conclusion is in agreement with the existing models. The other descriptors
v2 χ , 

v
p

3χ  and 
c

3 χ  that reflect the contribution of clusters in a molecule to

aqueous solubility are also important in describing the aqueous solubility

of aliphatic alcohols. This demonstrates again that higher-order connectiv-

ity indices contain a large mount of information about the molecule, the

larger-scale structural features (such as branching), to name a one.

The linear model obtained is as the following general correlation:

c
3v

p
3v2v11 4964.04424.07004.02500.57.5933-8.1229Sln χ+χ+χ−χ+χ= (18)

R2 = 0.990, F = 839.5, n = 50

The results calculated with eqn. 18 are shown in Table-3 and the scat-

ter plot is shown in Fig. 1. The AAE for our linear model is 0.149 and the

RMSE is 0.048 indicating that the new model has comparable accuracy to

the existing models.
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Fig. 1. Scatter plot of the calculated vs. the experimental values of ln S.
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TABLE-3 
CALCULATED AND EXPERIMENTAL VALUES OF THE MOLAR 

AQUEOUS SOLUBILITY FOR 50 ALIPHATIC ALCOHOLS 

Compd. 
no. 

Name Experimental Linear Non-linear 

1 2-Methyl-1-propanol 0.0227 0.0112 0.11469 

2 2-Butanol 0.0658 0.7110 0.23675 

3 3-Methyl-1-butanol -1.1680 -1.2404 -1.15769 

4 2-Methyl-1-butanol -1.0584 -1.1079 -1.22727 

5 2-Pentanol -0.6349 -0.6760 -0.70465 

6 3-Pentanol -0.4861 -0.6026 -0.65680 

7 3-Methyl-2-butanol -0.4050 -0.3773 -0.40515 

8 2-Methyl-2-butanol 0.3386 0.3117 0.17080 

9 3-Hexanol -1.8326 -1.9741 -1.87723 

10 3-Methyl-3-pentanol -0.8301 -0.9129 -0.89567 

11 2-Methyl-2-pentanol -1.1178 -1.1391 -0.94822 

12 2-Methyl-3-pentanol -1.6094 -1.7524 -1.57359 

13 3-Methyl-2-pentanol -1.6399 -1.5632 -1.60137 

14 2,3-Dimethyl-2-butanol -0.8510 -0.7460 -0.88252 

15 3,3-Dimethyl-1-butanol -2.5903 -2.0707 -2.41682 

16 3,3-Dimethyl-2-butanol -1.4106 -1.2049 -1.42845 

17 4-Methyl-1-pentanol -2.2828 -2.5565 -2.45789 

18 4-Methyl-2-pentanol -1.8140 -1.8491 -1.63931 

19 2-Ethyl-1-butanol -2.7871 -2.3502 -2.61375 

20 2-Methyl-2-hexanol -2.4734 -2.4344 -2.30304 

21 3-Methyl-3-hexanol -2.2634 -2.3504 -2.23631 

22 3-Ethyl-3-pentanol -1.9173 -2.2232 -2.08819 

23 2,3-Dimethyl-2-pentanol -2.0025 -1.9776 -2.08024 

24 2,3-Dimethyl-3-pentanol -1.9379 -2.0143 -2.11339 

25 2,4-Dimethyl-2-pentanol -2.1456 -2.3438 -2.14529 

26 2,4-Dimethyl-3-pentanol -2.8018 -2.9344 -2.65358 

27 2,2-Dimethyl-3-pentanol -2.6437 -2.6225 -2.72695 

28 3-Heptanol -3.1942 -3.2744 -3.16549 

29 4-Heptanol -3.1966 -3.3456 -3.18457 

30 2,2,3-Trimethyl-3-pentanol -2.9318 -2.8586 -3.09995 

31 2-Octanol -4.7560 -4.5936 -4.58207 

32 2-Ethyl-1-hexanol -4.9967 -5.0357 -4.98713 

33 2-Nonanol -6.3200 -5.9022 -6.15126 

34 3-Nonanol -6.1193 -5.8917 -5.95364 

35 4-Nonanol -5.9522 -5.9545 -5.98424 

36 5-Nonanol -5.7446 -5.9461 -5.98424 
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Compd. 
no. 

Name Experimental Linear Non-linear 

37 2,6-Dimethyl-4-heptanol -5.7764 -5.6775 -5.67899 

38 3,5-Dimethyl-4-heptanol -5.2983 -5.2698 -5.12628 

39 2,2-Diethyl-1-pentanol -5.5728 -5.7158 -5.48074 

40 7-Methyl-1-octanol -5.7446 -6.4825 -5.91937 

41 3,5,5-Trimethyl-1-hexanol -5.7699 -5.8187 -5.94183 

42 1-Butanol 0.0953 -0.1146 -0.07249 

43 1-Pentanol -1.3471 -1.4233 -1.39511 

44 2,2-Dimethyl-1-propanol -0.6463 -0.8495 -0.81820 

45 1-Hexanol -2.7181 -2.7320 -2.85564 

46 2-Hexanol -1.9951 -1.9762 -1.89283 

47 1-Heptanol -4.0745 -4.0406 -4.24789 

48 1-Octanol -5.4015 -5.3493 -5.51666 

49 1-Nonanol -6.9078 -6.6580 -6.73726 

50 1-Decanol -8.2208 -7.9667 -8.03454 

 

After the building of the linear model, SVR−ε  is adopted to develop

a nonlinear model based on the same five molecular connectivity indices.

The parameters that affect the performances of SVR in this data set are

sequentially optimized to get the best model. The parameters include

capacity parameter C, ε of ε-insensitive loss function and the parameter γ
of Gaussian function and their optimal values is found as 4000, 0.02 and

0.3. The detailed selection is shown in Figs. 2-4.
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Fig. 2. The gamma vs. mean squared error in regression
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Fig. 3. The epsilon vs. mean squared error in regression

0 2000 4000 6000 8000 10000

0.00024

0.00026

0.00028

0.00030

0.00032

0.00034

0.00036

m
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

cost

Fig. 4 The cost vs. mean squared error in regression

The results calculated with the nonlinear model built through SVR are

shown in Table-3 and the scatter plot is shown in Fig. 1 to compare with

the linear model. The AAE for our nonlinear model is 0.116 and the corre-

lation coefficient is 0.996 indicating that the new nonlinear model has

better accuracy than the existing models.

4520  Wang et al. Asian J. Chem.



Conclusions

Linear and non-linear predictive QSPR models that based on high-

order molecular connectivity indices are proposed in this work to correlate

the aqueous solubility of 50 aliphatic alcohols. The optimal linear model

obtained by stepwise regression has a correlation coefficient of 0.990 and

an average absolute error of 0.149 ln units and is comparable with the

existing models. The optimal nonlinear model obtained by support vector

regression has a correlation coefficient of 0.996 and an average absolute

error of 0.116 ln units and is better than the existing models. The new

models are predictive and easy to apply for it requires only connectivity

indices in the calculations and does not require any experimental physico-

chemical properties in the calculation.
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