Asian Journal of Chemistry

Vol. 19, No. 6 (2007), 4575-4585

Synthesis and Characterization of Thioxopyridine, Pyrazolopyridine and Pyridopyrazolotriazine Derivatives

N.M. ABUNADAA*, A.K.K. EL-LOUH[†] and I.S. AL-ZAEEM[†] Department of Chemistry, Faculty of Applied Sciences, Al-Aqsa University Gaza P.O. Box 4051, Palestine via Israel E-mail: nadanadannrs@yahoo.com

Derivatives of arylidene cyanothioacetamide (**4a,b**) reacted with ethyl acetoacetate to give the thioxopyridine derivatives (**6a,b**). Compounds **6a,b** reacted with methyl iodide to yield methylthiopyridine derivatives (**7a,b**). Hydrazine hydrate reacted with either **6a,b** or **7a,b** to give aminopyrazolopyridine derivatives (**8a,b**). The diazonium salts of **8a,b** reacted with several active methylene compounds **1, 10a-h** to afford the pyridopyrazolotriazine derivatives (**11-19a,b**), respectively.

Key Words: Cyanothioacetamide, Thioxopyridines, Methylthiopyridines, Pyrazolo-[3,4-b]pyridines, Pyrido[2, 3:3,4]pyrazolo-[5,1-c]triazines.

INTRODUCTION

Significant work have been done using cyanothioacetamide derivatives¹⁻⁶ in the synthesis of thioxopyridine and its annelated derivatives of considerable biological activities⁷⁻¹¹. These findings aspired us to resume these efforts using new derivatives of cyanothioacetamide to synthesize thioxopyridine, pyrazolopyridine and pyridopyrazolotriazine derivatives compounds.

EXPERIMENTAL

Melting points were taken on a gallenkamp apparatus and are uncorrected. Infrared spectra (KBr) were determined on a Pye Unicam SP-300 and Shimadzu FT IR 8101 PC infrared spectrophotometers. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were determined on a Varian Mercury VX NMR spectrometer in DMSO with TMS as the internal standard. Mass spectra were recorded on a GCMS-QP 1000 EX Shimadzu, Japan. Elemental analyses were carried out at the Microanalytical center of the university of Cairo, Giza, Egypt.

Arylidene cyanothioacetamide (4a,b) were prepared ^{12,13} as previously described.

[†]Department of Chemistry, Faculty of Science, Al-Azhar University-Gaza, Gaza, Palestine.

4576 Abunadaa et al.

Asian J. Chem.

Preparation of dihydro-6-thioxopyridine derivatives (6a,b)

Method A: A mixture of each of 4a,b (0.01 mol) and the equivalent amount of ethyl acetoacetate (0.01 mol) in dioxane (30 mL) containing a catalytic amount of piperidine (0.3 mL) was heated under reflux for 6 h as indicated by TLC analysis. The solvent was evaporated and the solid that formed was collected by filtration and crystallized from ethanol to give **6a,b**.

Method B: A ternary mixture of cyanothioacetamide, ethyl acetoacetate and the appropriate aromatic aldehyde (0.01 mol) in dioxane (30 mL)containing a catalytic amount of piperidine (0.3 mL) was heated under reflux for 6 h as indicated by TLC analysis. The solvent was evaporated and the solid that formed was collected by filtration and crystallized from ethanol to give **6a,b**.

Ethyl 4-(1,3-benzodioxol-5-yl)-5-cyano-2-methyl-6-thioxo-1,6dihydropyridine-3-carboxylate (6a): Yellow crystals; IR (ν_{max}): 3458 (NH), 2226 (CN), 1708 (CO ester) cm⁻¹; ¹H NMR (δ): 2.49 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 3.28 (s, 3H, CH₃ pyridine), 3.93 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.10 (s, 2H, OCH₂O), 6.78-7.03 (m, 3H, ArH's), 13.9 (s, br., 1H, NH) ppm; ¹³C NMR (δ): 178.6 (C = S), 164.6 (**COO**CH₂CH₃), 116 (CN), 154.5-108.2 (10 aromatic carbon atoms), 101.8 (OCH₂O), 61.5 (COOCH₂CH₃), 18.0 (CH₃ pyridine) and 13.5 (COOCH₂CH₃) ppm.

Ethyl 5-cyano-4-(3,4-dimethoxyphenyl)-2-methyl-6-thioxo-1,6dihydropyridine-3-carboxylate (6b): Yellow crystals; IR (ν_{max}): 3446 (NH), 2227 (CN), 1708 (CO ester) cm⁻¹; ¹H NMR (δ): 2.39 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 3.15 (s, 3H, CH₃ pyridine), 3.77, 3.82 (two s, 6H, two OCH₃), 3.93 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.89-7.12 (m, 3H, ArH's), 14.10 (s, br., 1H, NH) ppm.

Preparation of 6-methylthiopyridine derivatives (7a,b): A solution of each **6a,b** (0.01 mol) and methyl iodide (0.01 mol) in methanolic sodium methoxide (0.01 mol) was stirred at room temperature for 3 h. The reaction mixture was poured into 50 mL of water. The solid that formed was collected, washed with cold ethanol and crystallized from ethanol to afford **7a,b**.

Ethyl 4-(1,3-benzodioxol-5-yl)-5-cyano-2-methyl-6-methylthiopyridine-3-carboxylate (7a):

White crystals; IR (v_{max}): 2223 (CN), 1737 (CO ester) cm⁻¹; ¹H NMR (δ): 0.95 (t, J = 6.9 Hz, 3H, COOCH₂CH₃), 2.55 (s, 3H, CH₃ pyridine), 2.7 (s, 3H, SCH₃), 4.06 (q, J = 6.9 Hz, 2H, COOCH₂CH₃), 6.11 (s, 2H, OCH₂O), 6.81-7.05 (m, 3H, ArH's) ppm; ¹³C NMR (δ): 166.2 (COOCH₂CH₃), 114.8 (CN), 163.3-104.5 (11 aromatic C's), 101.8 (OCH₂O), 61.6 (COOCH₂CH₃), 23.38 (CH₃ pyridine), 13.62 (SCH₃), 13.07 (COOCH₂CH₃) ppm.

Ethyl 5-cyano-4-(3,4-dimethoxyphenyl)-2-methyl-6-methylthiopyridine-3-carboxylate (7b): White crystals; IR (ν_{max}): 2221 (CN), 1730 (CO ester) cm⁻¹; ¹H NMR (δ): 0.96 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.57 (s, 3H, CH₃ pyridine), 2.66 (s, 3H, SCH₃), 3.77, 3.83 (two s, 6H, two OCH₃), 4.08 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.91-7.10 (m, 3H, ArH's) ppm.

Preparation of 3-aminopyrazolo[3,4-b]pyridine derivatives (8a,b): To a solution of each of **6a,b** or **7a,b** (0.01 mol) in absolute ethanol (10 mL), hydrazine hydrate (20 mL) was added. The mixture was heated under reflux for 6-7 h. The product formed after cooling was filtered, washed with cold ethanol and crystallized from ethanol to give **8a,b**.

Ethyl 3-amino-4-(1,3-benzodioxol-5-yl)-6-methyl-1H-pyrazolo-[3,4-b]pyridine-5-carboxylate (8a): Yellow crystals; IR (ν_{max}): 3453, 3287, 3156 (NH, NH₂), 1715 (CO ester) cm⁻¹; ¹H NMR (δ): 0.95 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.50 (s, 3H, CH₃ pyridine), 4.02 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 4.41 (s, 2H, NH₂), 6.10 (s, 2H, OCH₂O), 6.77-7.04 (m, 3H, ArH's), 12.26 (s, 1H, NH) ppm; ¹³C NMR (δ): 168.4 (COOCH₂CH₃), 154.6-108.4 (12 aromatic C's), 101.6 (OCH₂O), 60.8 (COOCH₂CH₃), 23.3 (CH₃ pyridine), 13.7 (COOCH₂CH₃) ppm.

Ethyl 3-amino-4-(3,4-dimethoxyphenyl)-6-methyl-1H-pyrazolo-[**3,4-b]Pyridine-5-carboxylate (8b):** Yellow crystals; IR (v_{max}): 3443, 3293, 3190 (NH, NH₂), 1722 (CO ester) cm⁻¹; ¹H NMR (δ): 0.95 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.53 (s, 3H, CH₃ pyridine), 3.77, 3.83 (two s, 6H, two OCH₃), 4.09 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 4.31 (s, 2H, NH₂), 6.88-7.11 (m, 3H, ArH's), 12.15 (s, 1H, NH) ppm.

General preparation of pyrido[2,3:3,4]pyrazolo[5,1-c]triazine derivatives (11-19): To a cold solution of 8a,b (0.01 mol) in ethanol (20 mL) and hydrochloric acid (3 mL) was added dropwise a cold aqueous sodium nitrite solution (0.01 mol) with stirring. After complete addition, stirring was continued for 2 h in an ice chest. The diazonium salts formed was filtered, washed with cold water and then with ethanol. A solution of the prepared diazonium salts and the appropriate active methylene compounds 1, 10a-h (0.01 mol) in ethanol (30 mL) was heated under reflux in the presence of piperidine (0.3 mL) for 3 h, or was stirred in the presence of sodium acetate for 4 h. The product formed in either case, was filtered, washed with cold ethanol and crystallized from the proper solvent to give 11-19a,b, respectively.

Ethyl 4-amino-10-(1,3-benzodioxol-5-yl)-8-methyl-3-thioaminocarbonylpyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (11a): Yellow crystals; IR (ν_{max}): 3484, 3446, 3293, 3149 (two NH₂), 1710 (CO ester) cm⁻¹; ¹H NMR (δ): 1.07 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.70 (s, 3H, CH₃ pyridine), 4.16 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.12 (s, 2H, OCH₂O), 7.01-7.18 (m, 3H, ArH's), 9.51, 9.89, 10.22, 10.70 (4s, 4H, two NH₂) ppm. Ethyl 4-amino-10-(3,4-dimethoxyphenyl)-8-methyl-3-thioaminocarbonylpyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (11b): Yellow crystals; IR (ν_{max}): 3480, 3442, 3290, 3145 (two NH₂), 1710 (CO ester) cm⁻¹; ¹H NMR (δ): 1.05 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.60 (s, 3H, CH₃ pyridine), 3.70, 3.82 (two s, 6H, two OCH₃), 4.13 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.99-7.20 (m, 3H, ArH's), 9.48, 9.85, 10.21, 10.67 (4s, 4H, two NH₂) ppm.

Ethyl 4-amino-10-(1,3-benzodioxol-5-yl)-3-cyano-8-methylpyrido-[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (12a): Yellow crystals; IR (v_{max}): 3292, 3190 (NH₂), 2227 (CN), 1722 (CO ester) cm⁻¹; ¹H NMR (δ): 1.01 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.67 (s, 3H, CH₃ pyridine), 4.20 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.17 (s, 2H, OCH₂O), 6.90-7.20 (m, 3H, ArH's), 9.82 (s, br., 2H, NH₂); ¹³C NMR (δ): 167.9 (COOCH₂CH₃), 115.4 (CN), 161.1-102.4 (14 aromatic C's), 101.6 (OCH₂O), 61.4 (COOCH₂CH₃), 24.3 (CH₃ pyridine), 13.7 (COOCH₂CH₃) ppm.

Ethyl 4-amino-3-cyano-10-(3,4-dimethoxyphenyl)-8-methylpyrido-[**2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (12b):** Yellow crystals; IR (v_{max}): 3290, 3185 (NH₂), 2225 (CN), 1720 (CO ester) cm⁻¹; ¹H NMR (δ): 1.03 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.71 (s, 3H, CH₃ pyridine), 3.76, 3.87 (two s, 6H, two OCH₃), 4.15 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 7.12-7.25 (m, 3H, ArH's), 9.45 (s, br., 2H, NH₂) ppm.

Ethyl 4-amino-10-(1,3-benzodioxol-5-yl)-3-aminocarbonyl-8methyl- pyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (13a): Yellow crystals; IR (ν_{max}): 3480, 3441, 3289, 3142 (two NH₂), 1710 (CO ester), 1671 (CO amide) cm⁻¹; ¹H NMR (δ): 0.98 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.66 (s, 3H, CH₃ pyridine), 4.13 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.11 (s, 2H, OCH₂O), 6.85-7.18 (m, 3H, ArH's), 9.49, 9.83, 10.20, 10.65 (4s, 4H, two NH₂) ppm.

Ethyl 4-amino-3-aminocarbonyl-10-(3,4-dimethoxyphenyl)-8methylpyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (13b): Yellow crystals; IR (v_{max}): 3475, 3438, 3280, 3140 (two NH₂), 1708 (CO ester), 1667 (CO amide) cm⁻¹; ¹H NMR (δ): 0.96 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.65 (s, 3H, CH₃ pyridine), 3.75, 3.86 (two s, 6H, two OCH₃), 4.12 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.70-7.15 (m, 3H, ArH's), 9.45, 9.80, 10.06, 10.57 (4s, 4H, two NH₂) ppm.

Ethyl 4-amino-10-(1,3-benzodioxol-5-yl)-9-ethoxycarbonyl-8methylpyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-3-carboxylate (14a): Yellow crystals; IR (v_{max}): 3395, 3263 (NH₂), 1725, 1697 (two CO ester) cm⁻¹; ¹H NMR (δ): 1.04 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃ pyridine), 1.36 (t, *J* = 7.2 Hz, 3H, COOCH₂CH₃ triazine), 2.68 (s, 3H, CH₃ pyridine), 4.14 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃ pyridine), 4.44 (q, *J* = 7.2 Hz, 2H,

COOCH₂CH₃ triazine), 6.14 (s, 2H, OCH₂O), 6.99-7.18 (m, 3H, ArH's), 8.74, 9.37 (two s, 2H, NH₂); ¹³C NMR (δ): 168.1, 165.3 (two COOCH₂CH₃), 160.8-102.1 (14 aromatic C's), 101.5 (OCH₂O), 61.5, 61.4 (two COOCH₂CH₃), 24.3 (CH₃ pyridine), 14.2 and 13.7 (two COOCH₂CH₃) ppm.

Ethyl 4-amino-10-(3,4-dimethoxyphenyl)-9-ethoxycarbonyl-8methylpyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-3-carboxylate (14b): Yellow crystals; IR (v_{max}): 3395, 3269 (NH₂), 1718, 1693 (two CO ester) cm⁻¹; ¹H NMR (δ): 1.05 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃ pyridine), 1.38 (t, *J* = 7.2 Hz, 3H, COOCH₂CH₃ triazine), 2.70 (s, 3H, CH₃ pyridine), 3.77, 3.87 (two s, 6H, two OCH₃), 4.16 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃ pyridine), 4.48 (q, *J* = 7.2 Hz, 2H, COOCH₂CH₃ triazine), 7.10 - 7.26 (m, 3H, ArH's), 8.9 (s, br., 2H, NH2) ppm.

Ethyl 3-acetyl-10-(1,3-benzodioxol-5-yl)-4,8-dimethylpyrido-[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (15a): Yellow crystals; IR (v_{max}): 1720 (CO ester), 1687 (CO acetyl) cm⁻¹.

Ethyl 3-acetyl-10-(3,4-dimethoxyphenyl)-4,8-dimethylpyrido-[**2,3:3,4]pyrazolo**[**5,1-c**][**1,2,4]triazine-9-carboxylate (15b):** Yellow crystals; IR (ν_{max}): 1723 (CO ester), 1692 (CO acetyl) cm⁻¹; ¹H NMR (δ): 1.07 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.75 (s, 3H, CH₃ pyridine), 2.87 (s, 3H, CH₃ triazine), 3.20 (s, 3H, CH₃ acetyl), 3.77, 3.90 (two s, 6H, two OCH₃), 4.17 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 7.18-7.28 (m, 3H, ArH's) ppm.

Ethyl 10-(1,3-benzodioxol-5-yl)-9-ethoxycarbonyl-4,8-dimethylpyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-3-carboxylate (16a): Yellow crystals; IR (v_{max}): 1718, 1700 (two CO ester) cm⁻¹; ¹H NMR (δ): 0.95 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃ pyridine), 1.10 (t, *J* = 7.2 Hz, 3H, COOCH₂CH₃ triazine), 2.70 (s, 3H, CH₃ pyridine), 2.83 (s, 3H, CH₃ triazine), 4.08 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃ pyridine), 4.24 (q, *J* = 7.2 Hz, 2H, COOCH₂CH₃ triazine), 6.18 (s, 2H, OCH₂O), 6.51-7.26 (m, 3H, ArH's) ppm; ¹³C NMR (δ): 167.6, 167.1 (two COOCH₂CH₃), 162.2-108.2 (14 aromatic C's), 101.2 (OCH₂O), 61.8, 61.3 (two COOCH₂CH₃), 24.4, 23.4 (two CH₃), 13.8, 13.6 (two COOCH₂CH₃) ppm.

Ethyl 10-(3,4-dimethoxyphenyl)-9-ethoxycarbonyl-4,8-dimethyl pyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-3-carboxylate (16b): Yellow crystals; IR (v_{max}): 1740, 1718 (two CO ester) cm⁻¹; ¹H NMR (δ): 1.07 (t, J = 6.9 Hz, 3H, COOCH₂CH₃ pyridine), 1.41 (t, J = 7.2 Hz, 3H, COOCH₂CH₃ triazine), 2.74 (s, 3H, CH₃ pyridine), 3.18 (s, 3H, CH₃ triazine), 3.78, 3.89 (two s, 6H, two OCH₃), 4.20 (q, J = 6.9 Hz, 2H, COOCH₂CH₃ pyridine), 4.52 (q, J = 7.2 Hz, 2H, COOCH₂CH₃ triazine), 7.13-7.31 (m, 3H, ArH's) ppm.

Ethyl 10-(1,3-benzodioxol-5-yl)-9-ethoxycarbonyl-8-methyl-4phenylpyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-3-carboxylate (17a): Yellow crystals; IR (v_{max}): 1722, 1710 (two CO ester) cm⁻¹. 4580 Abunadaa et al.

Asian J. Chem.

Ethyl 10-(3,4-dimethoxyphenyl)-9-ethoxycarbonyl-8-methyl-4phenylpyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-3-carboxylate (17b): Yellow crystals; IR ($ν_{max}$): 1727, 1712 (two CO ester) cm⁻¹; ¹H NMR (δ): 1.08 (m, 6H, two COOCH₂CH₃), 2.73 (s, 3H, CH₃ pyridine), 3.79, 3.90 (two s, 6H, two OCH₃), 4.25 (m, 4H, two COOCH₂CH₃), 7.16-7.80 (m, 8H, ArH's) ppm.

Ethyl 3-acetyl-10-(1,3-benzodioxol-5-yl)-8-methyl-4-phenylpyrido-[2,3:3,4]Pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (18a): Yellow crystals; IR (ν_{max}): 1716 (CO ester), 1676 (CO acetyl) cm⁻¹; ¹H NMR (δ): 1.10 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.78 (s, 3H, CH₃ pyridine), 3.03 (s, 3H, COCH₃), 4.21 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.13 (s, 2H, OCH₂O), 7.09-7.94 (m, 8H, ArH's) ppm.

Ethyl 3-acetyl-10-(3,4-dimethoxyphenyl)-8-methyl-4-phenylpyrido-[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (18b): Yellow crystals; IR (ν_{max}): 1714 (CO ester) and 1670 (CO acetyl) cm⁻¹; ¹H NMR (δ): 1.07 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.77 (s, 3H, CH₃ pyridine), 3.03 (s, 3H, COCH₃), 3.75, 3.87 (two s, 6H, two OCH₃), 4.21 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 7.13-7.94 (m, 8H, ArH's) ppm.

Ethyl 10-(1,3-benzodioxol-5-yl)-3-benzoyl-8-methyl-4-phenylpyrido-[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (19a): Yellow crystals; IR (ν_{max}): 1715 (CO ester), 1663 (CO benzoyl) cm⁻¹; ¹H NMR (δ): 1.10 (t, *J* = 6.9 H z, 3H, COOCH₂CH₃), 2.75 (s, 3H, CH₃ pyridine), 4.22 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 6.14 (s, 2H, OCH₂O), 7.12-7.92 (m, 13H, ArH's) ppm.

Ethyl 3-benzoyl-10-(3,4-dimethoxyphenyl)-8-methyl-4-phenylpyrido-[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine-9-carboxylate (19b): Yellow crystals; IR (v_{max}): 1704 (CO ester), 1665 (CO benzoyl) cm⁻¹; ¹H NMR (δ): 1.08 (t, *J* = 6.9 Hz, 3H, COOCH₂CH₃), 2.75 (s, 3H, CH₃ pyridine), 3.78, 3.88 (two s, 6H, two OCH₃), 4.21 (q, *J* = 6.9 Hz, 2H, COOCH₂CH₃), 7.16-7.92 (m, 13H, ArH's) ppm.

RESULTS AND DISCUSSION

It was reported¹⁴ that arylidene acetoacetic ester 2 reacted with cyanothioacetamide 1 to give tetrahydrothioxopyridine (3) (Scheme-I).

But recently, it has been found that, the arylidene cyanothioacetamide (4) reacts with ethyl acetoacetate to afford the corresponding pyridine thiol derivatives (5)² and dihydrothioxopyridine derivatives (6)⁶, In present work, treatment of **4a,b** with ethyl acetoacetate in dioxane in the presence of piperidine afforded dihydrothioxopyridine derivatives (**6a,b**)⁵, neither tetrahydrothioxopyridine (**3**), nor pyridine thiol (**5**) were detected (**Scheme-II**). The structures of **6a,b** were inferred on the basis of their elemental analyses and spectral data. Thus, each of the products isolated exhibits NH, CN and C=O (ester) absorptions near 3450, 2220 and 1707 cm⁻¹, respectively. Furthermore, ¹H NMR spectra of **6a,b** showed a common broad signal near (δ) 13.9 ppm, assignable to the NH proton resonance.

4582 Abunadaa et al.

Asian J. Chem.

Compounds **6a,b** were reacted with methyl iodide in sodium methoxide solution to give 2-methylthiopyridine derivatives (**7a,b**). The structures of **7a,b** were confirmed from their elemental analyses and spectral data. Treatment of **7a,b** and **6a,b** with excess amount of hydrazine hydrate in ethanol gave products free of sulfur, which formulated as aminopyrazolopyridine derivatives (**8a,b**) (**Scheme-II**). The structures of **8a,b** were assigned from their elemental analyses and spectral data. The IR spectra of **8a,b**, in each case, show NH, NH₂ and C=O (ester) absorptions 3445, 3290, 3190 and 1715 cm⁻¹, respectively. ¹H NMR spectra reveal signals of NH and NH₂ protons resonance near (δ) 12.1 and 4.3 ppm, in addition to the usual proton signals. ¹³C NMR and the mass spectra of **8a,b** are compatible with the proposed structures.

Scheme-III

Next, the diazonium salts of **8a,b** were coupled with several active methylene compounds **1** and **10a-h** in ethanol, The products were formulated as pyridopyrazolotriazine derivatives **11-19a,b**, respectively. The structures of **11-19a,b** were inferred on the basis of elemental analyses and spectral data. The IR spectra, in each case, reveal the absence of NH and NH₂ absorption bands and appearance of new bands due to introduction of new groups. ¹H NMR spectra, also, show the absence of NH and NH₂ proton signals. Furthermore, both ¹³C NMR and mass spectra of **11-19a,b** were consistent with their structures (**Scheme-III**).

TABLE-1
PHYSICAL PROPERTIES AND ELEMENTAL ANALYSES OF
SYNTHESIZED COMPOUNDS

Compd.	m.p.	Yield	mf/mw	Cal	cd. (Found	l) %
no.	(°Č)	(%)	111.1. / 111.W.	С	Н	Ν
6a	245-7ª	61	$C_{17}H_{14}N_2O_4S$	59.64	4.12	8.18
			342.29	(59.70)	(4.15)	(8.14)
6b	226-8 ^a	65	$C_{18}H_{18}N_2O_4S$	60.33	5.06	7.81
			358.33	(60.22)	(4.94)	(7.79)
7a	113-5 ^a	74	$C_{18}H_{16}N_2O_4S$	60.69	4.52	7.86
			356.32	(60.57)	(4.50)	(8.12)
7b	127-9 ^a	77	$C_{19}H_{20}N_2O_4S$	61.28	5.41	7.52
			372.36	(61.31)	(5.36)	(7.61)
8a	261-3 ^a	81	$C_{17}H_{16}N_4O_4$	59.99	4.73	16.46
			340.32	(60.13)	(4.72)	(16.52)
8b	238-40 ^a	83	$C_{18}H_{20}N_4O_4$	60.66	5.65	15.72
			356.36	(60.64)	(5.58)	(15.64)
11a	>300 ^b	77	$C_{20}H_{17}N_7O_4S$	53.21	3.79	21.72
			451.38	(53.17)	(3.77)	(21.68)
11b	>300 ^a	72	$C_{21}H_{21}N_7O_4S$	53.95	4.52	20.97
			467.42	(53.87)	(4.38)	(20.88)
1 2 a	267-9°	67	$C_{20}H_{15}N_7O_4$	57.55	3.62	23.49
			417.36	(57.36)	(3.63)	(23.23)
12b	240-2 ^a	70	$C_{21}H_{19}N_7O_4$	58.19	4.41	22.62
			433.41	(58.20)	(4.42)	(22.47)
1 3 a	>300 ^b	71	$C_{20}H_{17}N_7O_5$	55.16	3.93	22.52
			435.38	(55.21)	(4.11)	(22.61)
13h	>300p	76	$C_{21}H_{21}N_7O_5$	55.86	4.68	21.71
130	>300°		451.42	(55.90)	(4.72)	(21.87)

4584 Abunadaa et al.

As	ian	J_{\cdot}	Cl	iem

Compd.	m.p.	Yield	mf/mw	Cale	ed. (Found	l) %
no.	(°C)	(%)	111.1. / 111.W.	С	Н	Ν
1 4 a	258-60 ^b	60	$C_{22}H_{20}N_6O_6$	56.89	4.34	18.09
		69	464.42	(56.79)	(4.41)	(18.02)
14b	271-3 ^b	73	$C_{23}H_{24}N_6O_6$	57.49	5.03	17.49
			480.46	(57.40)	(4.78)	(17.38)
15a	270-2ª	81	$C_{22}H_{19}N_5O_5$	60.96	4.41	16.15
			433.40	(60.88)	(4.26)	(16.06)
15b	105 78	07	$C_{23}H_{23}N_5O_5$	61.45	5.15	15.58
	195-7	03	449.44	(61.60)	(5.22)	(15.65)
16a	aso ab	74	$C_{23}H_{21}N_5O_6$	59.60	4.56	15.11
	230-2	/4	463.43	(59.58)	(4.48)	(15.02)
16b	191-2ª	79	$C_{24}H_{25}N_5O_6$	60.11	5.25	14.60
		/0	479.47	(60.08)	(5.16)	(14.48)
17a	230-2ª	72	$C_{28}H_{23}N_5O_6$	63.99	4.41	13.32
			525.49	(63.92)	(4.36)	(13.26)
17b 203	202 58	75	$C_{29}H_{27}N_5O_6$	64.31	5.02	12.93
	205-5	15	541.54	(64.28)	(4.91)	(12.76)
18a 181-3 ^a	101 28	00	$C_{27}H_{21}N_5O_5$	65.44	4.27	14.13
	181-3"	90	495.47	(65.61)	(4.31)	(14.32)
18b	171 08	88	$C_{28}H_{25}N_5O_5$	65.74	4.92	13.69
	1/1-5"		511.51	(65.81)	(4.94)	(13.71)
19a	271-3ª	81	$C_{32}H_{23}N_5O_5$	68.93	4.15	12.56
			557.53	(68.81)	(4.10)	(12.37)
101	266-8 ^b	71	C ₃₂ H ₂₇ N ₅ O ₅	69.09	4.74	12.21
190		/1	573.58	(68.92)	(4.68)	(12.14)

Crystallized from= ^a ethanol ^b ethanol-acetic acid ^c tetrahydrofuran

REFERENCES

- 1. Z. Shraideh and A. Sallal, *Biomed. Lett.*, **54**, 233 (1997).
- 2. P. M. Gilis, A. Haemers and W. Bollaert, Eur. J. Med. Chem., 15, 185 (1980).
- 3. J. Bompart, L. Giral, G. Malicorne and M. Puygrenier, *Eur. J. Med. Chem.*, **22**, 139 (1987).
- 4. S. Leistner, G. Wagener and M. Guestscharo, E. Glusa, *Pharmazie*, **41**, 54 (1986).
- 5. C.G. Dave, P.R. Shah, K.C. Dave and V.J. Patel, J. Indian Chem. Soc., 66, 48 (1989).
- 6. M.A.A. Elneairy, S.M. Eldin, F.A. Attaby and A.K.K. El-Louh, *Phosphorus, Sulfur, Silicon and Rel. Elem.*, **167**, 289 (2000).
- 7. G. Wagner, S. Leistner, H. Vieweg, U. Krasselt and J. Prantz, *Pharmazie*, **48**, 514 (1993).
- R.D. Youssefyeh, R.E. Brown, J. Wilson, U. Shah, H. Jones, B. Love, A. Khandwala, M.J. Leibowitz and P. Sonnino-Goldman, *J. Med. Chem.*, 27, 1639 (1984).

- 9. E.A. Bakhite, A.E. Abdel-Rahman, O.S. Mohamed and E.A. Thabet, *Pharmazie*, **55**, 577 (2000).
- 10. A.E. Abdel-Rahman, E.A. Bakhite, O.S. Mohamed and E.A. Thabet, *Phosphorus, Sulfur, Silicon and Rel. Elem.*, **166**, 149 (2000).
- 11. S.M.Z. Eldin, *Naturforsch*, **54b**, 674 (1999).
- 12. V. Grinstein and L. Serina, *Latvijas PSR Zinatru Akad. Vestis, Khim. Ser. (Russ.)*, 4, 469 (1963); *Chem. Abstr.*, **60**, 5391 (1964).
- 13. V.D. Dyachenko, S.G. Krivokolysko and V.P. Litvinov, Mendeleev Commun., 1 (1998).
- 14. A. Krauze, Z. Kalme, J. Pelcers, E. Clepper, I. Dipans and G. Duburs, *Khim. Geterotsikl. Soedin. (Russ.)*, **11**, 1515 (1983); *Chem. Abstr.*, **100**, 138902 (1984).
- 15. I.S. AL-Zaeem, Ph.D. Thesis, Al-Aqsa University, Palestine (2005).

(*Received*: 27 June 2006; *Accepted*: 21 April 2007) AJC-5594