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The combinatorial possibilities of hypothetical strategy

for even simple systems can be explosive. For example, the

number of compounds required to be synthesized in order to

place 10 substituents on the four open positions of an asym-

metrically disubstituted benzene ring system is ca. 10000.

The alternative to this approach of compound optimization is

to develop a theory that quantitatively relates variatioins in

biological activity to changes in molecular descriptors that

can easily be obtained for each compound. The present

article explains the statistical concepts used to derive a QSAR

and reviews the application of these techniques to pharma-

ceutical research.
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INTRODUCTION

Computational chemistry represents molecular structures as numeri-

cal models and simulates their behaviour with the equations of quantum

and classical physics. Available programs easily generate and present

molecular data including geometries, energies and associated properties

(electronic, spectroscopic and bulk). The usual way of displaying and

manipulating these data is a table in which compounds are defined by

individual rows and molecular properties (descriptors) are defined by

associated columns. QSAR attempts1-10 to find consistent relationship

between the variations in the values of molecular properties and the bio-

logical activity for a series of compounds so that these rules can be used to

evaluate new chemical entities.

Statistical concepts

A QSAR gneerally takes the form of a linear equation

Biological activity = Const + (C1•P1) + (C2•P2) + (C3•P3) + ·······

where the parameters P1 through Pn are computed for each molecule in the

series and the coefficients C1 through Cn are calculated by fitting variations

in the parameters and the biological activity. Since these relationships



require the application of statistical techniques, a brief introduction to the

principles behind the derivation of a QSAR is presented11-28.

Taking example of novel analgesic agents29 vanillylamides and

vanillylthioureas (related to capsaicin) developed by the Sandoz Institute

for Medical Research (biological activity tested by in vitro assay, which

measured Ca2+ influx into dorsal root ganglia neurons). The data reported

as the EC50 (µM) is shown in Table-1 (compound 6f is the most active of

the series).

TABLE-1 
CAPSAICIN ANALOGS ACTIVITY DATA 

O

H

N

OH

O

XB  Region

A  Region
C  Region

 
Compound no. Compound name X EC50 (µM) 

1 

2 

3 

4 

5 

6 

7 

6a 

6b 

6d 

6e 

6f 

6g 

6h 

H 

Cl 

NO2 

CN 

C6H5 

N(CH3)2 

I 

11.80 ± 1.90 

1.24 ± 0.11 

4.58 ± 0.29 

26.50 ± 5.87 

0.24 ± 0.30 

4.39 ± 0.67 

0.35 ± 0.05 

 

In the absence of additional information, the only way to guess the

activity of 6i is to calculate the average of the values for the current com-

pounds in the series. The average 7.24, provides a guess for the value of

compound 8 but authenticity of this guess cannot be guaranted.

The standard deviation of the data shows how far the activity values

are spread about their average. This value provides an indication of the

quality of the guess by showing the amount of variability inherent in the

data. The standard deviation is calculated as:
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Rather than relying on this limited analysis, it is better to develop an

understanding of the factors that influence activity within this series and

use this understanding to predict activity for new compounds. The accom-

plish of this objective requires: (a) Binding data measured with sufficient

precision to distinguish between compounds. (b) A set of parameters that

can be easily obtained and which is likely to be related to receptor affinity.

(c) A method for detecting a relationship between the parameters and bind-

ing data (the QSAR). (d) A method for validating the QSAR.

The QSAR equation is linear model that relates variations in biologi-

cal activity to variations in the values of computed (or measured) proper-

ties for a series of molecules. For the method to work efficiently, the

compounds selected to describe the chemical space of the experiments

(the training set) should be diverse. In many syntheses, compounds that

are structurally similar to the lead structure are prepared. The activity

values for this series of compounds frequently span a limited range. In

such cases, additional compounds have to be made and tested to fill out the

training set.

The quality of any QSAR depends upon the quality of the data, which

is used to derive the model. Thus, the dose-response curves need to be

smooth, should contain enough points to assure accuracy and should span

two or more orders of magnitude. Multiple readings for a given observa-

tions should be reproducible and must have relatively smaller errors. The

important issue is the signal-to-noise ratio. The variation of the readings

obtained by repeatedly testing the same compound should be much smaller

than the variation over the series. In case where the data collected from

biological experiments do not follow these guidelines, other methods of

data analysis should be utilized since the QSAR models derived from these

data will be questionable.

Biological data is often expressed in terms that cannot be used in a

QSAR analysis. Since QSAR is based on the relationship of free energy to

equilibrium constants the data for a QSAR study must be expressed in

terms of the free energy changes that occur during the biological response.

While examining the potency of a drug (the dosage required to pro-

duce a biological effect), the change in free energy can be calculated to be

proportional to the inverse logarithm of the concentration of the compound.

∆G0 = 2.3RT log K = log 1/[S]

Since biological data are generally skewed, the log transformation

moves the data to a nearly normal distribution. Thus, when measuring

responses under equilibrium conditions, the most frequent transformed data
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for the capsaicin agonists is given in Table-2. The data points, projected

onto the Y-axis, have become more uniformly distributed.

TABLE-2 
CAPSAICIN ANALOGS TRANSFORMED DATA 

O

H

N

OH

O

XB  Region

A  Region
C  Region

 

Compd. 
no. 

Compd. 
name 

X EC50 log EC50 log 1/EC50 

1 

2 

3 

4 

5 

6 

7 

6a 

6b 

6d 

6e 

6f 

6g 

6h 

H 

Cl 

NO2 

CN 

C6H5 

N(CH3)2 

I 

11.80 ± 1.90 

1.24 ± 0.11 

4.58 ± 0.29 

26.50 ± 5.87 

0.24 ± 0.30 

4.39 ± 0.67 

0.35 ± 0.05 

1.07 

0.09 

0.66 

1.42 

-0.62 

0.64 

-0.46 

-1.07 

-0.09 

-0.66 

-1.42 

0.62 

-0.64 

0.46 

 

Even with the transformed data, our best guess for the activity of 6i

still remains the average of the data set (or 0.40). The error associated with

this guess is calculated as the square root of the average of the squares of

the deviations from the average.
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The example data sets are intended to show the general approach. The

real data sets may have many more compounds and descriptors. Since the

purpose of a QSAR is to highlight relationships between activity and struc-

tural features it is likely to find one or more structural features that relate

the molecules and their associated activity. Additionaly, parameters that

work consistently for all of the molecules in the series have to be found.
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Several potential classes of parameters are used in QSAR studies.

Substituent constant and other physico-chemical parameters e.g., Hammett

sigma constants (measures the electronic effect of a group on the

molecule), Fragment counts (used to enumerate the presence of specific

substructures), other parameters include, topological descriptors and

values derived from quantum chemical calculations.

The selection of parameters is important in any QSAR study. Activity

predictions are possible only if the association between the parameters(s)

selected and activity is strong. Thus, for a given study, parameters that are

relevant to the activity for the series of molecules under investigation and

have values, which are obtained in a consistent manner, should be selected.

The analysis of capsaicin analogs can be divided into three regions:

(A) region occupied by an aromatic ring, (B) region defined by an amide

bond and (C) region occupied by a hydrophobic side-chain. The hypoth-

esis for the (C) region assumed that a small, hydrophobic substituent would

increase activity. Based on this assumption, the parameters that best define

this characteristic being molar refractivity (size) and π (the hydrophobic

substituent constant). Values are given in Table-3.

TABLE-3 
CAPSAICIN ANALOGS PARAMETER VALUES 

O

H

N

OH

O

XB  Region

A  Region
C  Region

 
Compd. 

no. 
Compd. name X log EC50  MR 

1 

2 

3 

4 

5 

6 

7 

6a 

6b 

6d 

6e 

6f 

6g 

6h 

H 

Cl 

NO2 

CN 

C6H5 

N(CH3)2 

I 

1.07 

0.09 

0.66 

1.42 

-0.62 

0.64 

  -0.46 

 1.03 

6.03 

7.36 

6.33 

25.36 

15.55 

13.94 
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The data above can be analyzed graphically and statistically. The most

visual approach with a limited number of variables being graphical. In this

case, plot of activity versus molar refractivity or hydrophobicity gives some

insight into the relationship between the parameters and activity.

The ability of the graph to provide insight into the activity for

compound 6i and the estimate obtained regarding biological activity by

knowing the value for either the hydrophobicity or molar refractivity is

matter of concern.

In this example where only two values are examined, both the

questions can be qualified but in more complex situations where multiple

parameters are correlated to activity, statistics is used to derive an equa-

tion, which relates activity to the parameter set. The linear equation that

defines the best model for this set of data being

log EC50 = 0.764 – (0.817) π

The authenticity of the model can be answered by determining how

well the equation predicts activities for known compounds in the series.

The above equation estimates the average value for the EC50 based on the

value of π; because assays vary, individual values differ from the regres-

sion estimate. This difference between the calculated values and the actual

(or measured) values for each compound is termed the residual from the

model. The calculated values for activity and their residuals are given in

Table-4.

TABLE-4 
CAPSAICIN ANALOGS CALCULATED VALUES 

O

H

N

OH

O

XB  Region

A  Region
C  Region

 

Compd. no. 
Compd. 
name 

X log EC50  
Calculated 
log EC50 

1 

2 

3 

4 

5 

6 

7 

6a 

6b 

6d 

6e 

6f 

6g 

6h 

H 

Cl 

NO2 

CN 

C6H5 

N(CH3)2 

I 

1.07 

0.09 

0.66 

1.42 

-0.62 

0.64 

-0.46 

 0.79 

0.21 

1.02 

1.26 

-0.81 

0.65 

-0.12 
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The residuals can be used to quantify the error in the estimate for

individual values calculated by the regression equation for this data set.

The standard error for the residuals can be calculated by taking the root-

mean-squre of the residuals (in this calculation, the denominator shown as

decremented by two to reflect the estimation of two parameters).

28.0
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For being an improved model, the standard deviation of the residuals

calculated from the model should be smaller than the standard deviation of

the original data. The standard error about the mean previously calculated

was 0.76 whereas the standard error from the QSAR model is 0.28. Clearly,

the use of linear regression has improved the accuracy of analysis.

For a series of compounds several assumptions can be used in deriving

a QSAR mode: (1) Parameters can be calculated (or measured in some

cases) more accurately than activity can be measured. (2) Deviations from

the best-fit line follow a normal (Gaussian) distribution. (3) Any variation

in the line described by the QSAR equation is independent of the magni-

tude of both the activity and the parameters.

Considering these assumptions, the quality of the model can be gauged

using a variety of techniques. Variation in the data is quantified by the

correlation coefficient, r, which measures how closely the observed data

tracks the fitted regression line. Errors in either the model or in the data

will lead to a bad fit. This indicator of fit to the regression line is calculated

as:
Sum-of-squares of the deviation from the regression line 

r2 = 
Sum-of-squares of the deviations from the mean 

  

Regression variance  
r2 = 

Original variance  

 The regression variance is defined as the original variance minus

variance around the regression line. The original variance is the sum-of-

the-squares distances of the original data from the mean.

Variance is calculated as follows:

Original variance = (1.07 - 0.40)2 + (0.09 - 0.40)2 + ·····

Original variance = 3.49

Variance around the line = (0.28)2 + (-0.12)2 + (-0.36)2 + ·····

Variance around the line = 0.40

Regression variance = Original variance - variance around the line

Regression variance = 3.49 - 0.40 = 3.09

r2 = Regression variance/original variance

r2 = 3.09/3.49

r2 = 0.89

Vol. 19, No. 6 (2007) QSAR Application to Pharmaceutical Research  4157



The possible values reported for r2 fall between 0 and 1. An r2 of 0

means that there is no relationship between activity and the parameter(s)

selected for the study. An r2 of 1 means there is perfect correlation. The

interpretation of the r2 value for the capsaicin analogs is that 89 % of the

variation in the value of the log EC50 is explained by variation in the value

of π, the hydrophobicity parameter.

While the data fitting to the regression line is excellent, it is important

to decide whether if this correlation is purely based on chance. the higher

the value for r2 the less likely that the relationship is due to chance. If many

explanatory variables are used in a regression equation, it is possible to get

a good fit to the data due to the flexibility of the fitting process; a line will

fit two points perfectly, a quadratic curve will fit three, multiple linear

regression will fit the observed data if there are enough explanatory

variables1. By considering the assumption that the data has a Gaussian

distribution, the F statistic below assesses the statistical significance of the

regression equation.

The F statistic is calculated from r2 and the number of data points (or

degrees of freedom) in the data set. The F ratio for the capsaicin analogs is

calculated as:

46.40
89.01

89.0
)27(

r1

r
)2n(F

2

2

n,1 =
−

−=
−

−=

This value often appears as standard output from statistical programs

or it can be checked in statistical tables to determine the significance of the

regression equation. In this case, the probability that there no relationship

between activity and the π value is less than 1 % ( p = 0.01).

Hydrophobicity values have found to corrleate well with biological

activity. The effect of addition of a size parameter (MR) on the model

should be analyzed, which is possibly influenced by several variables

(or properties). It is useful to assess the contribution of each variable. π

and MR appear to be correlated in this data set so the order of fitting can

influence how much the second variable helps the first. Multiple linear

regression is used to determine the relative importance of multiple

variables to the overall fit of the data.

Multiple linear regression attempts to maximize the fit of the data to a

regression equation (minimize the squared deviations from the regression

equation) for the biological activity (maximize the r2 value) by adjusting

each of the available parameters up or down. Regression programs often

approach this task in a stepwise fashion. That is, successive regression

equations will be derived in which parameters will be either added or

removed until the r2 and s values are optimized. The magnitude of the

coefficients derived in this manner indicates the relative contribution of

the associated parameters to biological activity.
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The two important caveats in applying multiple regression analysis

are either based on the fact that for given enough parameters any data set

can be fitted to a regression line. The consequence is, regression analysis

generally requires significantly more compounds than parameters; a rule

of thumb being three to six times the number of parameters under consid-

eration. The difficulty being regression analysis is most effective for inter-

polation and it is extrapolation that is most useful in a synthesis campaign

(i.e., the region of experimental space described by the regression analysis

has been explained, but projecting to a new, unanalyzed region can be prob-

lematic). Using multiple regression for the capsaicin analogs, following

equation that relates hydrophobicity and molar refractivity to biological

activity can be derived.

log EC50 = 0.762 – (0.819)π + (0.011) MR

s = 0.313, r2 = 0.888

To judge the importance of a regression term, three following points

need to be considered:

1. Statistical significance of the regression coefficient.

2. The magnitude of the typical effect bixi (in this case, 0.011 • 25.36).

3. Any cross correlation with other terms.

As more terms are added to multiple linear regression, r2 always gets

larger. The previous calculations (r2 = 0.89) carrying three significant

figures have to be recomputed so that rounding does not lead to confusion.

These results of this analysis indicate that, within this series, steric

bulk is not an important factor in activity. The influence of the hydropho-

bicity constant confirms the presence of a hydrophobic binding site.

Conclusion

Developing a quantitative structure activity relationship is difficult.

Molecules are typically flexible and it is possible to compute many possi-

bly useful properties that might relate to activity. In early research

program there are typically few compounds to model. Thus we have a few

compounds in a very high dimensional descriptor space. Which are the

important variables and how do we optimize them? It is clear that many

experimental compounds need to span through the space and model fitting

techniques need to address not only deriving a fit, but the predictive qual-

ity of the fit. While these methods have not discovered a new compound,

they have aided scientists in examining the volumes of data generate in a

research program. As the methods evolve, they will find broader applica-

tion in areas such as combinatorial chemistry.
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