Asian Journal of Chemistry

AM1 Semi-Empirical Study of the Structural Property of Two Thio-triazine Schiff Bases

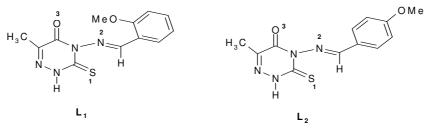
IRAN SHEIKHSHOAIE^{*}, MASOUMEH TABATABAEE[†] and MITRA GHASSEMZADEH[‡] Department of Chemistry, Shahid-Bahonar University of Kerman, Kerman, Iran E-mail: i_shoaie@yahoo.com

> Two novel Schiff bases (L_1 and L_2) were prepared by condensation of 4-amino-6-methyl-1,2, 4-triazine-3-thione-5-one with 2-methoxybenzaldehyde and 4 methoxybenzaldehyde. The structures of L_1 and L_2 were determined by X-ray analysis and reported. L_2 imine has three forms intermolecular hydrogen bonding but L_1 compound does not have any hydrogen bonding. In this study, AM1 semi-empirical calculations are used to investigate the structure and hydrogen bonding with nitrogen, oxygen and hydrogen in N-H group containing in these compounds.

> Key Words: Thio-triazine Schiff base, AM1, Single crystal structure.

INTRODUCTION

By condensation of primary amines with aldehydes or ketones gives imines containing a C=N bond. An aryl group bonded to the nitrogen or carbon stabilizes the compounds, are known as Schiff bases¹. It is well documented that Schiff base and its metal complexes are important in diverse fields of chemistry and biochemistry owing to their biological activities^{2,3} and catalytic properties⁴⁻⁶. Some of the Schiff bases have been used as analytical reagents because they enable simple and inexpensive determinations of various organic and inorganic substances. In addition, Schiff bases and their metal complexes have potential applications as metallomesogens and in the development of photonic devices⁷.


Theoretical calculations have been used for investigation of the electronic properties of compounds. Recently, the structural and optical properties of some azo Schiff base compounds have been reported⁸⁻¹⁰. In the present study, the electronic structure of two thio triazine Schiff base compounds L_1 and L_2 (Scheme-I) has been discussed. These ligands have three coordination sites N, O and S atoms in the imine group C=N (Scheme-I).

[†]Department of Chemistry, Islamic Azad University, Yazd- Branch, Iran.

[‡]Chemistry & Chemical Engineering Research Center of Iran.

4282 Sheikhshoaie et al.

Scheme-I Chemical structure of L1 and L2 Schiff base ligands

EXPERIMENTAL

The MOPAC 7.0¹¹ program is used and a full optimization of the structure of two imine ligands was performed at Austin Model 1¹² AM1 semi-empirical method. A starting semi-empirical structure for MOPAC 7.0 calculations was optimized using the Hyperchem 7.0 program¹³.

RESULTS AND DISCUSSION

The calculated structural property of L_1 and L_2 Schiff bases are given in Table-1.

 $\begin{array}{c} {\rm TABLE-1}\\ {\rm SOME\ IMPORTANT\ CALCULATED\ PROPERTY\ OF\ L_1\ AND\ L_2}\\ {\rm COMPOUNDS\ BY\ AM1\ METHOD} \end{array}$

Compd.	DH	Surface	Volume	$\rm E_{HOMO*}$	E _{LUMO**}	DE	$\mu_{(Debye)}$
L_1	69.198	479.54	780.38	-8.9269	-0.9700	7.9569	2.525
L_2	68.016	478.24	773.37	-8.8660	-1.0508	7.8152	0.682
*Highest occupied molecular orbital **Lowest unoccupied molecular orbital							

Table-1 shows that L_1 compound is more polar molecule than the L_2 compound and L_2 Schiff base compound is more stable than L_1 compound.

The optimized structures of two Schiff base ligands are shown in Fig. 1. Fig. 1. shows the coordination sites for binding to the metal orbitals for

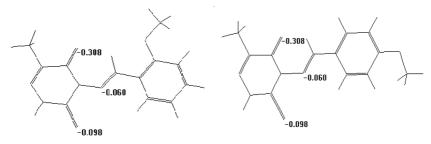


Fig. 1. Optimize structures of L₁ and L₂ imines with AM1 semi-empirical method (the net charges are shown on the N, O and C=N coordination sites)

Vol. 19, No. 6 (2007)

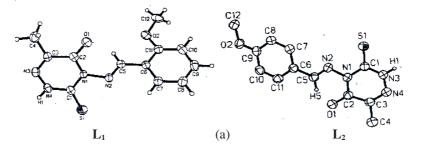
 L_1 and L_2 Schiff base ligands, in other hand we calculated the contribution of atomic orbital (AO) to the molecular orbital (MO) for these compounds (Table-1).

From Table-2, it is deduced that the MO more likely to combine with the metal orbital are Ψ_{49} , Ψ_{44} and Ψ_{40} for L_2 compound that are located mainly on S(1), N(2) and O(3) atoms and Ψ_{49} , Ψ_{44} and Ψ_{41} are located mainly on S(1), N(2) and(O3) atoms in the structure of L_1 Schiff base ligand.

Geometry optimization for L_1 and L_2 compound were done by AM1 semi-empirical method by using MOPAC 7.0 program package. Some important bond lengths, bond angles and torsion angles for these compounds were shown in Table-2. (Fig. 2 and Table-3).

TABLE-2 SOME CALCULATED PROPERTIES OF MOLECULAR ORBITAL FOR L_1 AND L_2 COMPOUND

МО	En anov (aV)	Contribution of AO to the MO			
IVIO	Energy (eV) –	S (1)	N(2)	O(3)	
L_2					
Ψ_{40}	-12.4930	0.0000	0.0023	0.9280	
Ψ_{41}	-12.2848	0.0010	0.0000	0.0031	
Ψ_{42}	-11.9049	0.0012	0.0004	0.0032	
Ψ_{43}	-11.7963	0.0124	0.0000	0.0018	
Ψ_{44}	-10.6194	0.0006	0.5685	0.0003	
Ψ_{45}	-10.4467	0.1345	0.0000	0.0000	
Ψ_{46}	-9.9904	0.0000	0.0061	0.0001	
Ψ_{47}	-9.4715	0.0000	0.0000	0.0000	
Ψ_{48}	-9.0360	0.0000	0.0000	0.0000	
$\Psi_{49(\text{HOMO})}$	-8.8660	0.9384	0.0001	0.0002	
L ₁					
Ψ_{40}	-12.6393	0.0000	0.0109	0.0030	
Ψ_{41}	-12.2885	0.0000	0.0020	0.8334	
Ψ_{42}	-12.0868	0.0000	0.0000	0.0000	
Ψ_{43}	-11.9473	0.0002	0.0001	0.0000	
Ψ_{44}	-10.8171	0.0000	0.5813	0.0000	
Ψ_{45}	-10.3404	0.0000	0.0049	0.0000	
Ψ_{46}	-9.7180	0.0000	0.0002	0.0000	
Ψ_{47}	-9.3624	0.0000	0.0001	0.0000	
Ψ_{48}	-9.0252	0.0001	0.0030	0.0000	
$\Psi_{49(\text{HOMO})}$	-8.9269	0.9393	0.0003	0.0000	


4284 Sheikhshoaie et al.

Asian J. Chem.

TABLE-3

SELECTED BOND LENGTHS (Å), BOND ANGLES (°) AND TORSION ANGLES (°) FOR L₁ AND L₂ SCHIFF BASES CALCULATED BY AM1 SEMI-EMPIRICAL METHOD AND BY X-RAY ANALYSIS

Selected bonds or angles	Bond lengths (Å) and bond angle (°) calc. By AM1 semi-empirical method	Bond lengths (Å), by X-ray analysis	Bond lengths (Å) and bond angle (°) calc. by AM1 semi- empirical method	Bond lengths (Å), by X-ray analysis
	L_1	L_1	L_2	L_2
S(1)-C(1)	1.585	1.624	1.586	1.659
N(1)-N(2)	1.355	1.426	1.355	1.418
N(1)-C(2)	1.432	1.397	1.432	1.407
N(3)-N(4)	1.315	1.360	1.315	1.359
N(4)-C(1)	1.419	1.354	N(4)-C(3) 1.316	1.289
O(2)-C(1)	1.239	1.226	O(1)-C(2) 1.238	1.210
N(1)-C(1)	1.432	1.379	1.432	1.383
N(2)-C(5)	1.305	1.276	1.305	1.274
N(2)-N(1)-C(2)	126.8	118.3	136.7	120.7
N(1)-N(2)-C(5)	124.5	113.5	124.3	115.0
N(3)-N(4)-C(1)	127.3	127.5	118.6	116.9
N(1)-C(2)-C(3)	116.3	114.3	116.4	113.7

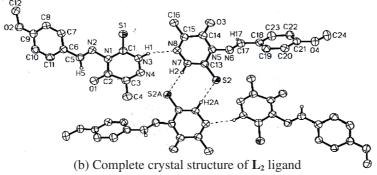


Fig. 2. The crystal structures of L_1 , L_2 (a) and the complete crystal structure of L_2 ligands (b)

Vol. 19, No. 6 (2007)

Conclusions

(a) L_1 and L_2 compounds have three coordination sites S(1), N(2) and O(3). (b) OCH₃ group has not any role in the net charges of coordination sites in the structures of L_1 and L_2 Schiff bases. (c) L_1 compound is polar molecule; also the volume and surface of L_1 compound are bigger than L_2 . (d) Theoretical calculation has a good agreement with those in the X-ray experimental data.

REFERENCES

- 1. H. Schiff, Ann. Chim., (Paris), 131, 118 (1864).
- 2. G. Foulds, Coord. Chem. Rev., 169, 3 (1998).
- 3. A.F. Kolodziej, Prog. Inorg. Chem., 41, 493 (1994).
- 4. S. Bunce, R.J. Cross, L.J. Farrugia, S. Kunchandy, L.L. Meason, K.W. Muir, M.O. Donnell, R.D. Peacock, D. Stirling and S.J. Teat, *Polyhedron*, **17**, 4179 (1998).
- 5. R.I. Kureshy, N.H. Khan, S.H.R. Abdi, S.I. Patel, P. Lyer, E. Suresh and P. Dastidar, J. *Mol. Catal. A: Chem.*, **160**, 217 (2000).
- 6. K. Bernardo, S. Leppard, A. Robert, G. Commenges, F. Dahan and B. Meunier, *Inorg. Chem.*, **35**, 387 (1996).
- 7. L. Ledoux and Y. Zyss, Novel Optical Materials and Applications, Wiley, New York (1997).
- 8. I. Sheikhshoaie and M.H. Mashhadizadeh, Russ. J. Coord. Chem., 29, 710 (2003).
- 9. I. Sheikhshoaie, A. Mostafavi and N. Monadi, Asian J. Chem., 18, 961 (2006).
- M. Jalali-Heravi, A.A.A. Khandar and I. Sheikshoaie, *Spectrochim. Acta*, 55A, 2537 (1999).
- J.J.P. Stewart, MOPAC, A Semi-empirical Molecular Orbital Program QCPE 455 1983, Version 6.00 (1990).
- 12. M.J. Dewar, E.G. Zeobish, E.F. Healy and J.J. Stewart, J. Am. Chem. Soc., 107, 3903 (1990).
- 13. Hyperchem, Release 7.0, for Windows, Hypercube, Inc.

(Received: 8 April 2006; Accepted: 2 April 2007) AJC-5551