Physico-Chemical Analysis of Bore Wells Drinking Water of Nadiad Territory

D.K. BHOI*, D.S. RAJ, Y.M. MEHTA†, M.B. CHAUHAN and M.T. MACHHAR Department of Chemistry, J. & J. College of Science, Nadiad-387 001, India

Physico-chemical analysis such as temperature, pH, dissolved oxygen, total dissolved solids, chloride, total alkalinity, calcium and magnesium hardness, sulphate, phosphate, nitrate of bore wells water was carried out from twenty sampling stations of Nadiad territory area during February 2003–July 2003 in order to assess water quality index.

Key Words: Physico-chemical analysis, Bore wells drinking water, Nadiad, Gujarat.

INTRODUCTION

In continuation of our earlier analysis on bore wells drinking water ¹⁻³, here we report the physico-chemical analysis of bore wells drinking water of Nadiad, located in Kheda district of Gujarat. Bore wells water is generally used for drinking and other domestic purposes in this area. The use of fertilizers and pesticides, manure, lime, septic tank, refuse dump, etc. are the main sources of bore wells water pollution⁴. In the absence of fresh water supply, people residing in this area use bore wells water for their domestic and drinking consumption. In order to assess water quality index, we have carried out the physico-chemical analysis of bore wells drinking water.

EXPERIMENTAL

In the present study bore wells water samples from twenty different areas located in and around Nadiad territory were collected in brown glass bottles with necessary precautions⁵.

All the chemicals used were of AR grade. Double distilled water was used for the preparation of reagents and solutions. The major water quality parameters considered for the examination in this study are temperature, pH, dissolved oxygen (DO), total dissolved solid (TDS), total alkalinity, calcium and magnesium hardness, sulphate, phosphate and nitrate contents⁶.

Temperature, pH, DO, TDS, phosphate, nitrate values were measured by water analysis kit and manual methods. Calcium and magnesium hardness of water was estimated by complexometric titration methods⁷. Chloride contents were deter-

[†] Dr. Yogendra R. Patel Research Centre, Nadiad, India.

mined volumetrically by silver nitrate titrimetric method using potassium chromate as indicator and was calculated in terms of mg/L. Sulphate contents were determined by volumetric method⁷.

RESULTS AND DISCUSSION

The physico-chemical data of the bore wells water samples collected in February 2003 and July-2003 are presented in Tables 1 and 2 respectively. The results of the samples vary with different collecting places because of the different nature of soil contamination⁷.

Temperature: In the present study temparature ranged from 27.3 to 33.0°C. **pH:** In the present study pH ranged from 7.5 to 8.71. The tolerance pH limit is 6.5–8.5. The sample station No. 9 shows higher pH than the prescribed range⁸.

TDS: In the present study TDS ranged from 250 to 1470 mg/L. According to WHO⁹ and Indian standards, TDS values should be less than 500 mg/L for drinking water. The sample station nos. 2, 6, 7, 8, 9, 11, 12, 14, 15, 18, 20 and higher ranged as prescribed by WHO and Indian standards¹⁰.

D.O.: The D.O ranged from 4.4 to 8.4 mg/L in present samples. The minimum tolerance range is 4.0 mg/L for drinking water.

Chloride: In the present study chloride ranged from 26.98 to 569.42 mg/L, while the tolerance range for chloride is 200–1000 mg/L¹⁰.

Total Alkalinity: The total alkalinity content in the samples is in between 160 to 748 mg/L.

Calcium Hardness: The calcium hardness ranged from 8.02 to 88.70 mg/L. The tolerance range for Ca-hardness¹¹ is 75–200 mg/L.

Magnesium Hardness: Magnesium ranged from 7.88 to 155.42 mg/L. The tolerance range for Mg hardness¹¹ is 50–100 mg/L.

Sulphate: Sulphate ranged from 46.12 to 443.26 mg/L. The tolerance range for sulphate is 200–400 mg/L12.

Phosphate: Phosphate ranged from 7.0 to 55 mg/L. The evaluated values of phosphate in the present study are higher than the prescribed values ¹³. The higher values of phosphate are mainly due to the use of fertilizers and pesticides by the people residing in this area. If phosphate is consumed in excess, phosphine gas is produced in gastro-intestinal tract on reaction with gastric juice.

Nitrate: Nitrate ranged from 75.0 to 450 mg/L. The tolerance range for nitrate is 20–45 mg/L. Nitrate nitrogen is one of the major constituents of organism along with carbon and hydrogen as amino acids proteins and organic compounds in the bore wells water¹⁴. If the nitrate reduces to nitrite, then it causes methaemoglobinaemia in infants^{15, 16} and also diarrhea.

ACKNOWLEDGEMENTS

The authors are thankful to the UGC for financial assistance in the form of Minor Research Project [F No. 47-259/2001 (WRO) Dt. 01/11/2001]. The authors are also thankful to the Nadiad Education Society, Nadiad and the Principal, J. & J. College of Science, Nadia for providing necessary facilities.

TABLE-1
ANALYSIS RESULT OF THE SAMPLES COLLECTED IN FEBRUARY 2003

Sample station	Temp (°C)	hф	TDS (mg/L)	DO (mg/L)	Chloride (mg/L)	Total alkalinity (mg/L)	Ca hardness (mg/L)	Mg hardness (mg/L)	Sulphate (mg/L)	Phosphate (mg/L)	Nitrate (mg/L)
College	33.0	7.66	250	6.2	26.98	172	14.43	18.47	269.00	55.0	320
Fatepura	27.6	8.20	269	9.9	66.74	552	12.82	15.55	307.44	12.0	380
Uttarsanda	27.4	8.15	442	4.6	34.08	904	32.06	68.04	288.23	10.0	210
Narsanda	27.4	8.00	488	2.8	166.44	388	59.31	58.32	384.30	18.0	430
Bhumel	27.4	8.00	412	9.7	63.90	368	40.10	64.15	238.27	11.0	325
Vanipur	27.4	8.23	558	9.9	113.60	428	20.84	73.87	176.79	18.0	904
Piplag	27.5	8.32	633	8.9	120.70	388	11.22	36.94	122.98	11.0	300
Piplata	27.7	99.8	737	9.9	92.30	265	9.62	36.94	226.74	21.0	8
Akhdol	27.3	8.56	1108	2.0	213.00	748	16.03	35.96	434.26	21.5	901
Kaloli	27.4	8.33	396	8.2	45.60	352	35.27	20.41	92.23	14.0	320
Dumral	27.4	8.50	698	4.2	191.70	220	62.52	7.88	219.05	22.0	330
Tudel	27.4	8.44	1454	6.4	468.60	9	30.46	62.21	199.84	22.0	130
Dabhan	27.4	8.30	358	8.0	36.92	300	9.62	15.55	188.31	20.5	400
Davada	27.4	8.35	1420	9.9	431.68	628	56.11	51.52	365.10	20.5	120
Kanjoda	27.4	8.18	747	4.4	177.50	432	32.06	114.70	199.84	19.0	120
Ajaypura	27.7	7.60	442	5.4	92.30	360	88.17	58.32	180.62	11.0	310
Valapura	Z7.7	8.19	373	8.9	59.64	300	38.47	56.38	46.12	14.0	320
Alindra	27.5	8.43	979	4.2	117.86	392	20.84	45.68	134.51	7.0	75
Khushalpura	27.7	8.52	376	2.6	45.60	328	14.43	49.57	211.37	35.0	400
Salun	7.72	8.46	524	7.0	26.80	44	12.82	17.50	192.15	36.0	410

TABLE-2
ANALYSIS RESULT OF THE SAMPLES COLLECTED IN JULY-2003

Š	Sample station	Temp (°C)	Hd	TDS (mg/L)	DO (mg/L)	Chloride (mg/L)	Total alkalinity (mg/L)	Ca hardness (mg/L)	Mg hardness (mg/L)	Sulphate (mg/L)	Phosphate (mg/L)	Nitrate (mg/L)
-	College	32.10	7.70	280	7.0	28.40	160	9.62	19.44	226.74	23.0	280
5	Fatepura	32.00	8.18	700	8.9	72.42	524	14.43	18.47	315.13	11.0	395
ω.	Uttarsanda	30.30	8.10	490	4.8	36.92	392	33.66	61.24	303.60	12.0	250
4	Narsanda	32.00	8.01	200	5.2	102.24	264	24.05	60.26	349.71	15.0	405
۶.	Bhumel	32.20	8.10	205	8.9	91.89	372	27.25	56.38	222.89	18.0	330
છ	Vanipur	32.20	8.25	280	6.2	102.24	372	9.62	70.96	172.94	21.5	450
7	Piplag	32.10	8.40	620	8.9	129.22	348	16.03	34.02	119.13	11.0	310
∞i	Piplata	33.00	8.50	725	8.9	82.36	919	8.02	50.54	207.52	15.0	105
6	Akhdol	32.20	8.71	1050	5.4	156.20	744	11.22	28.19	318.97	28.0	95
0.	Kaloli	32.20	8.35	380	8.4	42.60	596	32.06	9.72	111.45	13.0	250
=	Dumral	32.20	8.10	852	4.4	213.00	484	41.68	31.10	238.27	35.5	270
12.	Tudel	32.30	8.22	1470	6.2	427.42	584	30.46	62.21	276.70	16.0	105
13.	Dabhan	32.30	8.28	380	8.4	44.02	34	12.82	20.41	207.52	17.0	235
4	Davada	32.40	8.20	1052	7.0	569.42	288	56.11	74.84	388.14	15.0	95
15.	Kanjoda	32.00	8.16	740	4.6	171.82	420	49.69	155.42	199.84	20.0	105
16.	Ajaypura	32.10	7.50	422	9.6	71.00	262	52.90	52.49	188.31	18.0	280
17.	Valapura	32.30	8.10	356	7.0	73.84	292	8.02	43.44	111.45	10.0	270
<u>8</u>	Alindra	32.20	8.22	615	4.4	71.00	376	19.24	70.96	149.88	19.0	130
19.	Khushalpura	32.20	8.30	320	5.8	41.18	316	14.43	40.82	188.31	20.0	300
20.	Salun	32.00	8.25	510	7.2	56.80	424	30.46	22.36	199.84	13.0	250

REFERENCES

- A.K. Rana, M.J. Kharodawala, J.M. Patel, R.K. Rai, B.S. Patel and H.R. Dabhi, Asian J. Chem., 14, 1209 (2002).
- A.K. Rana, M.J. Kharodawala, H.R. Dabhi, D.M. Suthar, D.N. Dave, B.S. Patel and R.K. Rai, Asian J. Chem., 14, 1178 (2002).
- 3. M.J. Kharodawala, D.M. Suthar, D.N. Dave, J.M. Patel, B.S. Patel, R.K. Rai and H.R. Dabhi, *Orient. J. Chem.* (in press).
- 4. P.A. Hamilton and D.K. Helsel, Ground Water, 33, 2 (1995).
- E. Brown, M.W. Skovgstd and M.J. Fishman, Method for Collection and Analysis of Water Samples for Dissolved Minerals and Gases, Vol. 5 (1974).
- N. Manivasagam, Physico-chemical Examination of Water, Sewage and Industrial Effluents, Pragati Prakashan, Meerut (1984).
- 7. A.I. Vogel, Text Book of Quantitative. Inorganic Analysis, 4th Edn., ELBS, London (1978).
- APHA: American Public Health Association, Standard Methods for Examination of Water and Wastewater, 16th Edn., APHA-WPCF-AWWA, Washington (1985).
- 9. International Standard for Drinking Water, 3rd Edn., WHO, Geneva (1971).
- 10. The Gazette of India: Extraordinary, Part-II, 3, 11 (1991).
- 11. A.J. Dhembare, G.M. Pondhe and C.R. Singh, Poll. Res., 17, 87 (1998).
- 12. J.E. Mekee and H.W. Wolf, Water Quality Criteria. The Resources Agency of California State Water Quality Control Board (1978).
- 13. APSFSL, Andhra Pradesh State Forensic Science Laboratories, Annual Report (1988).
- 14. D.G. Miller, Nitrate in Drinking Water, Water Research Centre, Medmenham (1981).
- NEERI: National Environment Engineering Research Institute, Disinfection of Small Community Water Supplies, Nagpur (1972).
- 16. J.W. White, J. Agri. Food Chem., 23, 886 (1975).

(Received: 16 April 2004; Accepted: 25 August 2004)

AJC-3544

NANOCOMPOSITES 2005

22-24 AUGUST 2005

Contact:

PO Box 700272 11696 Amherst Ct Plymouth MI 48170 USA

Email: shar@executive-conference.com URL http://executive-conference.com