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A revised analysis of the effect of long-range non-spherical terms
in the intermolecular potential on the interaction second virial
coefficient is presented with a preferred realistic potential func-
tions—proposcd for the molecular gases and their mixtures of noble
gases—for spherical core treatment of integration in the small re-
gions of intermolecular distances. The paper presents a contribution
to the interaction second virial coefficient due to the asphericity of
the molecular charge distribution. Results from calculating the non-
spherical contribution to the interaction second virial coefficient
with a realistic spherical core are obtained from statistical mechan-
ics and applicd to the pure system such as 0;-O; and Hj-H; and
mixtures  such as N+ He, N;+Ar, O3+ He, O, + Ar, H;
+ He, Hy + Ne, Hy + Ar and Hj + Kr.
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INTRODUCTION

The virial equation of state is a standard approach used to represent experi-
mental data of real gases'. This equation represents the compression factor of the
mixture of interest as an infinite series expansion

PV B(T) C(T)

=l4+—+—"+... )
NkT Y, V2

where k is Boltzmann constant, and B and C are the second and third virial
coefficients, respectively. By definition, the first term in the virial equation (1)
represents ideal gas behaviour with subsequent terms giving corrections for real
systems.

The special significance given to the virial equation of state arises primarily
from the fact that the virial coefficients can be directly related to the interactions
between the molecules of the system®™. The second virial coefficient depends
upon interactions between pairs of molecules, while the third involves the
interaction energies of three molecules groupings. Thus, the evaluation of virial
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coefficients, principally second virial coefficient, has served as a test for model
interaction potential.
The classical expression for the second virial coefficient? is:

B,(T) = 8—; f: 2 dr j[l —exp (%Q]] do, do, ?)

where J-d(nl and Idu)z stand for integrations over the angular coordinates of the

molecules, r is the distance between centres, and V(r) is the intermolecular
potential and N, is Avogadro’s number.

It is convenient to divide intermolecular forces into three categories: (i) short
range, where the potential has repulsive nature in this region and electronic
exchange due to overlapping of molecular electronic shells is very substantial,
(ii) intermediate range, with van der Waals minimum the actual position of which
is determined by the balance between the repulsion and attraction forces; (iii) long
range, where electronic exchange can be neglected and the intermolecular forces
are attractive. Each individual range of distances involves its own approximations
allowed to be evaluated considering the different interaction types and evaluate
their contribution to the intermolecular polentia17.

The potential energy of interaction between two polyatomic molecules is
usually assumed to consist of a spherically symmetric component plus a
contribution due to the asphericity of the molecular charge distribution®. The latter
contribution is conveniently divided into terms representing the classical electro-
static interaction between the two charge distributions, the anisotropy of the
quantum mechanical dispersion forces and the shape of the molecular core (i.e.,
the anisotropy of the repulsive part of the potential). Parts of the potential
contribute more significantly to some properties of the molecular gas than to
others. For example, the viscosity of a quadrupolar gas can usually be adequately
described by a potential function consisting only of the spherical component plus
the contribution due to the quadrupole moments, whereas the second virial
coefficient of the same gas depends significantly on all parts of the potential
function®.

It should also be mentioned that tensor algebra is a well-known method for a
molecular physicist’®'!. Since the tensor analysis for calculation of the second
virial coefficients'? is rather complicated, it is better to adopt the method of
calculation proposed by Beatie and Stockmayer13

An indirect method is usually used to determine intermolecular forces from
virial coefficients'* !> due to failure of the direct approach. On the other hand
many kinetic theory transport properties depend on the fact that a force exists
between molecules'®! and only secondarily on the nature of the force.

One of the methods for the calculation of the second virial coefficients of

: : . 2,m
non-spherical molecules is the perturbation procedure developed by Pople™ =.
They proposed that in addition to the interaction of permanent dipole, other
oriented intermolecular forces such as dipole-induced dipole interaction and
quadrupole may be important.

Over the past decade or so, accurate methods have been developed for
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describing the thermodynamic behaviour of fluid composed of simple molecules.
By simple, we mean, molecules for which the most important intermolecular
forces are repulsion and dispersion (van der Waals attraction), with electrostatic
forces due to dipoles, quadrupole, etc. Many of the gases fall within this category.
In the present study, the statistical-mechanical expression for the second virial
coefficient is expanded accordingly to produce an expression that gives correc-
tions to the spherical contribution in the form of a series that converges rapidly
at high temperatures. The coefficients of the series are some integrals® %7 These
integrals are functions of temperature, which are evaluated numerically and
tabulated in the present work with the explicit application of the realistic potential
for the following system: 0,-0,%, 0,-He and 0,-Ar%, N,-He*® with ESMSV
potential, Hy-H,*!, Hy-He*? with HED potential, Hy-Ne, H,-Ar and H,-Kr?* with
Buckingham-Corner and finally O,-Kr, N,-Kr and N,-Ar** with Lennard-
Jones(12-6) potential.

Methodology

If two non-spherical molecules interact, the potential energy will depend on
the relative spatial orientations of the molecules as well as on their distance apart.
One can write the intermolecular pair potential as the sum of a spherical part,Vy(r),
and a non-spherical portion V

V= VO(r) + Vns(wi) (3)
in which V(r) depends only on the intermolecular distance r, and the non-spher-
ical potential depends also on the angles w; that specify the relative orientation
of the molecular pair. This means that the molecules are treated as rigid rotating
bodies and that the effects of vibrational degrees of freedom aie left unaccounted.
The effects of vibration on second virial coefficients are usually negligible for
simple molecules except near the dissociation limit, which means at very high
temperatures®.

It should also mentioned that the non-spherical intermolecular potential could
be written as the sum of terms that describe the long-range interactions and an
additional term to describe the molecular shape? *+2':

Vs = Vs(long-range) + V (shape) 4

The contributions to V¢ (long-range) can be conveniently divided into three
parts:

V,s(long-range) = V ((electrostatic) + V  (induction) + V (dispersion) (5)

The electrostatic parts, which are entirely classical interactions, arise from the

interactions between permanent multi-pole moments of the molecules, such as

dipole moment {, quadrupole moment 0, and higher moments. The dominant

electrostatic interactions are:
2

n
Vas(up) = - = (2cic2 = 5155¢) (6)

3u0
Vos(u) = P (2 —c)(Beiey = 2s5c + 1) ™
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V,(60) = 19; [1 - 5¢% — 5c2 — 15¢%3 + 2(de,cp = 515:0)°] ®)
T
where
sy = sin 0y ¢, =cos 0
s, =sin B, ¢, =cos 6,
c=cos (92— ) 9

here 0,, 65, ¢, and ¢, are the usual angles describing the mutual orientation of
two linear molecules.

The interaction between the permanent multi-pole moments of one molecule
and the dipole polarizability (cty), and quadrupole polarizability (ag) etc., arises
from quantum mechanical fluctuations of the electron distribution in an atom or
molecule that gives rise to transient multi-pole moments. The dominant non-
spherical induction interactions are:

V. (induction) = V(. ind 1) + Vo (46, ind 1) + V(0 ind ) (10)
where
2 2.2
20y 4 , o
VAW“MH)=‘z6d@ﬁ+3%‘2)‘ugd@ﬁ%‘sﬁﬁ) (1)
T r
-12ubq,
V(8. ind 1) = ——2 (¢} + ) B0
r
90°0,
Vi, ind p) =~ 5 d [4c‘,‘ +Act +st+si- %) (13)
I

The dispersion contributions arise from electrostatic interactions between
transient moments in a second molecule. The dominant non-spherical dispersion
interaction is

; ka(’ 3 2, 2 3 2
V,.(Cg anis) = _;o_ 1 - 5 (1 —k)ci+c3) - 5 k(2¢ ¢y — 8152€) (14)

where E(, is the mean dispersion coefficient and K is the anisotropy of the dipole
polarizability.

K= (onl(l, - aj)/3&d (15)
in which OL[', is the polarizability along the axis of molecular symmetry while

1. . . — . . . o
oy is perpendicular to it and 0, 18 the orientation averaged polarizability.

Finally, the potential energy due to molecular shape has been confined to an
empirical representation as:

V(shape) = 2 (3¢} + 363 -2) (16
r

where A is a constant and n is an integer (is usually set equal to 12).
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Calculations

It is shown that for light molecules and atoms and also in low temperature
conditions, classical mechanics is completely inadequate to describe the mol-
ecular motion; therefore, we must use quantum mechanics instead.

Accordingly, the classical expression for the second virial coefficient, given
in the preceding section, cannot be used for such quantum systems. Nevertheless,
the evaluation of the virial coefficients by purely quantum mechanical methods
is quite difficult. Therefore, it seems reasonable to seek for a computational
method, which starts with the classical result as the first approximation and goes
on by the addition of quantum correction terms. The Wigner-Kirkwood*¢ 3
expansion is appropriate for this purpose. For a spherical potential, U(r), the
Wigner-Krikwood expansion for the second virial coefficient yields:

B =B, + (MY/m)B, + M¥m)*B, +. . . (17
where B, is given by eq. (3) and

T = -U 2
B=——| U"%ex redr
' 6(kT)? ‘[0 p(kT)

- [ -u\(u”* u? u? u” ),
By=——| exp|>= bt t d 19
2 6(kT)“Io p[kT)[ 10 52 T kT, " 1202 |" & a9
du

~_dU
U=g> U T dr

We can write the intermolecular potential in terms of V,, and Vj; the
non-spherical part is considered as a perturbation, the exponential is then
expanded in a series as follows:

exp(kT J—l+ z -(—J—i)—(k,r) 20)

with

j=1
where the first term gives the spherical contribution to B(T) and the summation
gives the non-spherical contribution,

B(T) = Bo(T) + B,(T) @n

Here

=f %
By(T) = 21N, fo [1 —exp (— ETOJ] *dr
and
__Na ﬁ“_lL
BuD =50 Jzzl HJ'( ) ( kT) dr do; do, 23)

The latest equation can be expressed as linear combinations of the following
integrals:
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n-3 4 *
. -3 = 5 -V,
(%)= n__2__ ;2) ] . X2 CXPL T*O} dx (24)
m
Vo
in which T* = -1:21 , V: =— and x = 1/r,;,, where 0 is the separation at which the

0
spherical potential is zero and & is the depth of the potential well.

Based upon the preceding paragraphs, the non-spherical contributions to the

second virial coefficient for axially symmetric molecules are given as:
BX(T*) =B (electrostatic) + BJy, (induction) + B, (dispersion)

+ B:s (shape) + B:s (cross-term) (25)
_ B
21N, 5o /3
cross terms resulting from multiplying out the terms (Vo/kT) in Eq. (23).

We use the notation JE for J, when the damping function is applied in the J;
integrals, viz.,

where B*(T*) = and BY (cross terms) arises from a large number of

3 n-3 V*
* n-— 2 n
R == (rm] J, %7 0 exp| oo 26)
The individual electrostatic contributions are as follows>%:
2 2
-2 (w*2 1{p
Bo (i) =5 | "7 ) [J? +5s (F I+ @7
2
%, oo —6[WKOFVI oL 726 (WF*)
an(ue) - 5 T* JS + 3185 T* Jl() +... (28)
o* : o*2 ’
-6 [ 6*2 6
B.(66) = 5 FJ [J?o ~ 29 {FJ N+ } (29)
where pu*= L/z and 0*=—7(—>
(€000)" (€o00)"?
The individual induction contributions are as follows:
2
* -2 P«*Za: *2
Boy(W, ind p) = 75| =5 O% + 1o 5% +.. ] (30)
o\
864 | u*0%0y
ns(l'l ind H)_?[ T* J11)4'*'- .- (31

2
B* 6. ind ) = —162 [ W2 | 1o
I'IS( ‘lnd p’)_ 455 T* ‘116

x_ Oy
where 0y =—
Go
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The dispersion contribution is:

2
2| xC 19
B(Cg anis) = IS[T*"] [1+10 }J,2+ (33)

Cs
Wlth CG = —6
€900

Another contribution of the non-spherical second virial coefficients in term of
1P s given® in the following equations:

2
-8( 3 A*
B, (shape) = —> S (Zn 3J( ) D+ .. (34)
3 u*B* p*2 24 [ g*2
B:S(“xe)=§( | || Pt 3s| = | TR (35)
( * * :
0*q,
Bir(u, ind 1 x 0, ind p) = 318454 L“ = L (36)
27 ( 6*2 2
ns(ee X C6 anls) T* T* J“ + . (37)
C
ns(p., ind u x Cg anis) = -4 [i* ][Ti] a;" kI +. (38)
*\°| C
ns(6 ind p x Cg4 anis) = 318454 [ ] [Ti] 0y KJM +. 39

where A* = A/gy0f

RESULTS AND DISCUSSION

In summary, the present study has shown that a suitable way of estimating of
various contributions to the interaction second virial coefficients of fluids with
linear homo-nuclear molecules and their mixtures with noble gases according to
Eq. (25). The results are given in Tables 3-5. This paper has also been concerned
with the evaluation of the quantum corrections to the interaction second virial
coefficient of the aforesaid systems, by adopting the Wigner-Kirkwood expansion.
The method provides the values of the interaction second virial coefficients of the
aforementioned systems with an uncertainty commensurate with experimental
accuracy. It should be mentioned that the quantum corrections on the interaction
second virial coefficients are also considered in our calculation by the egs. (17-19).
Now, the origin of the non-spherical contributions in the interaction second virial
coefficients is clear. On the other hand, the physical effects appear to distinguish
between one kind of force and another. The substances in Tables 3-5 are particu-
larly interesting. They belong to a class of molecules, often called “linear”, whose
intermolecular potential is usually assumed largely anisotropic. It is apparent that
they are far from spherical. The interaction second virial coefficient of these pure
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and mixture systems differs from those of an assembly of spherical molecules.
Finally, not only the nature of these various kinds of forces is not obscure, but also
their physical effects are clear.

TABLE-1
EXAMPLE OF EFFECT OF DAMPING ON THE CALCULATED NON-SPHERICAL
CONTRIBUTION TO THE INTERACTION SECOND VIRIAL COEFFICIENT Hz-He.
THE CORE POTENTIAL IS HFD-B

T =1 T =5
Contribution
Undamped Damped Undamped Damped
B*ns (6, ind y) 437x 100 -348x10°  -298x1077  -1.96x 107
B*ns (Cg anis) 628x 10  -5.18x 1073  —2.84x10™% -202x107*
B*ns (0, ind p x Cg anis) -2.85x107*  -230x 0% -157x10°  -1.07x 107
By (spherical) -37.7729 +12.7506
TABLE-2
SAME AS TABLE-1 FOR Hj. THE CORE POTENTIAL IS HFD-A
T™=1 T™=5
Contribution
Undamped Damped Undamped Damped
B*ns (60) -0.19072 ~0.16754 112X 107 -6.07x 107
B*ns (6, ind) 304x 107 —2.11x10°  -324x10°  -464x107°
B*ns (Cg anis) “128x102  -1.10x1072  —-4.53x10* -6.04x 107
B*ns (00 x Cg anis) -124% 1072 1.08 x 1072 4.07x 1074 5.30x 107
B*ns (0, ind ux Cganis) ~1.53x 107 -130x107°  -6.46x 105  -893x107
By (spherical) -50.9576 9.117901
TABLE-3

THE CALCULATED VALUES OF NON-SPHERICAL CONTRIBUTION TO THE
INTERACTION SECOND VIRIAL B (T*) FOR Hy-NOBLE GAS MIXTURES

T* Hj,-Hj H,-He Hj-Ne Hy-Ar Hy-Kr

0.5 -1.304 420 102 —440x 1072 -420x 107 -437x 107
1 -0.169 541x10%  -547x107 -529x107 -550x 107
2 ~0.035 L13x 10 —L10x1073  -110x 107 -115x 107
3 _156x 10 -5.19x107¢ -487x10% -501x10* -523x107*
4 0.19x 107 -3.11x10% -2.85x107%  -299x 107 -3.13x107*
5 618x 107  —213x10%  -191x10% -204x107* -2.14x10™
6 45110  -158x 10 -139x10* -151x10* -1.58x 107
7 347x 1073 —123x 1074 -1.07x107%  -118x 107 -123x 107
8 278x 10 -1.00x 10 -854x10° —9.54x10° -9.98x 107
9 228x 10  -835x10° -7.03x10° -794x10° -831x107

—
o

_193x 107 -T.13x 107  -592x10°  -676x10°  -7.07x 107
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TABLE-4

Interaction Second Virial Coefficients of Non-spherical Molecules

SAME AS TABLE-3 FOR N,-NOBLE GAS MIXTURES

53

T* Nj-He N3-Ar Ny-Kr

05 -7.75x 1072 -027 -2.18x 1072

1 -1.01x 1072 3.37x107? -275%x 1073

2 -222x 107 -7.03x 1072 -5.76x 107

3 -1.05%x 107 -321x1073 -2.64 x 107

4 -6.46 % 107 -1.92% 1073 ~1.58 x 107

5 —-4.50x 1074 -131xi073 -1.09x 107

6 -340x 107 -9.72x107* -8.05x107°

7 -268x 107 -7.58x 107 -6.29x 107

8 -220x 107 —6.14x 107 -5.10x 107

9 -1.85%x 107 -5.11x 107 -425x 107

10 -159% 107 -435x 1074 -3.62x 107

TABLE-5
SAME AS TABLE-3 FOR 0,-NOBLE GAS MIXTURES

T* 0,-0, 0,-He Oy-Ar OxKr
0.5 -356x 107! -8.87x 107 -1.61x 107! -549x 1072
1 —-457x1072 -129x 107 -205x 1072 6911073
2 -9.84x 1073 -3.16x107 -430% 1073 -144x107°
3 -4.63x 1073 -1.60% 107 -196x 1073 -6.59x 107
4 -2.84x107 -1.03x 107 -1.18x 1073 -394x107*
5 -1.99x 1073 -143x10*  -809x 107 -269%107*
6 -1.50x 107 -5.78 x 107 -6.03x 107 -199x 107
7 -1.19% 107 ~4.72x107 —4.75x 107! -1.55x 107
8 -9.83x107¢ -3.99x 107 -3.88x 107 -125x 107
9 -832x 107 -345x 107 -327x 107 -1.05x 107
10 ~7.19%x 107 -3.05x 107 -2.82x 107 -890x 1073
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Conclusion

In the present study the interaction second virial coefficients of some diatomic
gases have been calculated using proposed realistic potential for O,-O,, H,-H,
and mixtures such as N,+ He, N, + Ar, N, +Kr, O, + He, O, + Ar, O, + K,
H, + He, H, + Ne, H, + Ar and H, + Kr as core potential for the calculation of
the non-spherical contribution to the interaction second virial coefficients. As the
other investigators have observed the interaction second virial coefficient is also
quite sensitive to the choice of the pair-interaction potential energy function'™,

hence, the unique novelty of the present study seems to describe an mterestmg ‘

example of the application of the proposed realistic potential to largely anisotropic
systems which appears to be intuitively reasonable. As the figures 1-3 show, the

3
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Fig. 1. Deviation of the calculated values of the interaction second virial coefficients (cc/mole)
for pure and mixtures from the experimental values. O3 + He: (#) Ref. [46], (W) Ref.
[45]; O, + Ar: (A) Ref. [46]; and of O;-Oy: (ORL [49

-1
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2 L]

25 L L I I L L L
0 100 200 300 400 500 600 700 800

T(K)

Fig. 2. Same as Fig. 1. N; + He: (¢) Ref. [45]; Np + Ar: (W) Ref. [45]
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Fig.3. Same as Fig. 1. H, + He: (¢) Ref. [45]; H, + Ne (W) Ref. [45]; H, + Ar: (A) Ref. [45];

and Hy-H,: (®) Ref. [45]

errors, within 4% cc/mol are in good agreement with experimental uncertainty
for a wide range of temperatures.
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