NOTE ## Synthesis and Characterization of Cd(II) Complex of S₄N₃Cl SURENDRA SINGH YADAV and S.P.S. JADON* Department of Chemistry, S.V. College, Aligarh-202 001, India E-mail: ad_sp@yahoo.com Cadmium(II) complex of S_4N_3Cl was prepared by refluxing the mixture of S_4N_3Cl and cadmium acetate in DMF. The chemical data assigned the complex as $(S_4N_3Cl)_2Cd(OOCCH_3)_2$. The spectroscopic data infer that the complex is quadridentate coordinated complex having triclinic geometrical structure. Key Words: S₄N₃Cl, Cd(II), Complex. $S_4N_3Cl^1$ is the most stable adduct of S_4N_4 , out of its various halogenated derivatives³⁻¹¹. But, few complexes of these halogenated derivatives have been synthesised and reported^{12, 13}. In the present note we describe the synthesis of S_4N_3Cl and its spectral properties. The complex of S_4N_3Cl with Cd(OOCCH₃)₂ is a light yellow coloured solid soluble in water and decomposes on heating. On the basis of its analytical data, % found (calcd.), S 39.72 (39.91), N 13.03 (13.10), Cl 11.02 (11.07), Cd 17.44 (17.50), CH₃COO⁻ 18.30 (18.40) and m.w. 644.5 (641.42), the complex has been formulated as $(S_4N_3Cl)_2$ Cd(CH₃COO)₂ which is also supported by its mass spectrum, showing mass fragments at m/z 289 for $(S_4N_3Cl-N-S-Cl)$ (M +2), 424 for $S_4N_3ClCd(CH_3COO)_2$ (M +2), 527 for $S_4N_3ClCd(CH_3COO)_2-S_2N_2$, 589 for $S_4N_3ClCd(CH_3COO)_2-S_3N_4$ and 645 for $(S_4N_3Cl)_2Cd$ (CH₃COO)₂ (M +3) fragments, suggesting that two molecules of S_4N_3Cl have linked to one molecule of Cd(CH₃COO)₂ forming quadridentate complex and confirming its above mentioned molecular formula. The IR spectrum of the complex (Table-1) is compared to that of ligand vibrations at 435 cm⁻¹ (w, b) for two N—S—Cd and 1066 (b, d) cm⁻¹ for two S—N—Cd bands have been observed, explaining quadridentative complex ion of S_4N_3Cl ring to Cd^{2+} ions alongwith the presence of the frequencies at 1402 cm⁻¹ for N—S—Cl, 1657 and 2343 (b) cm⁻¹ for CH₃COO⁻ bands. The assignments in higher region for δ (S—N) bands have been found, expressing that the complex is Cd^{2+} ion bridged complex between two S_4N_3Cl rings possessing sandwich structure. Further to expound the nature of the complex, its electronic spectrum was recorded. Two peaks at 200, 236 nm were observed. Out of them the former band is due to the charge transfer transition caused by Cd^{2+} and CH_3COO^- ions, while the latter assignment is on account of p_{π} - d_{π} transitions of S_4N_3Cl ring. The value of oscillator strength 'f' is of the order of 10^{-5} for spin allowed Laport forbidden transition, *i.e.*, for spin-orbital coupling, the coordination of S_4N_3Cl with Cd^{2+} 3039-3290 ь ion is occurring. No signal was observed in its EPR spectrum, suggesting its diamagnetic character. | Vibrations | Assignments | Force constants $K \times 10^{-5}$ dynes/cm ² | |------------|---|--| | 410 s | (S—Cl) | 1.887 | | 435 wb | $(N \longrightarrow S \longrightarrow M)$ | 0.858 | | 617 s | (S-N free) | 2.193 | | 1066 b | $(S\longrightarrow N\longrightarrow M)$ | 6.549 | | 1402 b | N—S—Cl | 8.889 | | 1657 b | OOCCH ₃ | | | 2343 ъ | —OOCCH ₃ | | | 2825 w, s | δ(SN) | 45.957 | | 2881 w, s | δ(SN) | 47.797 | | 2927 s | δ(S-N) | 49.342 | | 2989 s | δ(SN) | 51.447 | | | | | TABLE-1 IR (cm⁻¹) SPECTRAL DATA OF (S₄N₃Cl)₂Cd(OOCCH₃); From the X-ray diffraction pattern of the complex, the values of 'd', 'd_{hkl}, axial ratios and axial angles (Table-2) are calculated and it is inferred that the complex possesses triclinic geometrical structure (Fig. 1). 62,320 $\delta(S-N)$ Fig. 1. Structure of $(S_4N_3Cl)_2 \cdot Cd^{2+}$ Complex ion. S_4N_4 and S_4N_3Cl were prepared by Jolly and Geohring's method^{14, 15}. The complex was synthesised by refluxing the mixture of S_4N_3Cl (0.5 g) and $Cd(CH_3COO)_2$ (0.5 g) in DMF for about 24 h. When the light yellow colour changed into orange, the product formed was separated, washed, dried and stored in vacuum desiccator over fused $CaCl_2$. The spectrometric investigations were carried out on Jeol SX 102 (FAB) mass spectrometer, Shimadzu 8201 P.C. IR and Hitachi 320 Perkin-Elmer-Lambd 15 UV/Vis spectrophotometers respectively, while XRD pattern was graphed on Debye-Flex 2002 diffractrometer in 20 range using CuK_{α} as source of radiation. 510 Yaday et al. Asian J. Chem. | TABLE-2 | | | | | |---------|----------------|--------|---------|--| | XRD | PATTERN | OF THE | COMPLEX | | | Unit cell parameters | d (Å)
(observed) | d _{hkl} (Å) | |---|---------------------|----------------------| | $2\theta(^{\circ}) = 20.46, 22.85, 25.0,$ | 4.3405 | 4.3405 | | 26.69, 28.53, 33.76 | 3.8914 | 3.8915 | | 37.25, 38.84, 41.63 | 3.5556 | 3.5556 | | 43.97, 48.31, 52.24 | 3.3402 | 2.3623 | | $a_0 = 6.1499 \text{ Å}$ | 3.1285 | 2.2125 | | $b_0 = 5.0956 \text{ Å}$ | 2.6548 | 1.5328 | | $c_0 = 2.8585 \text{ Å}$ | 2.4139 | 1.3937 | | $\alpha = 124.193^{\circ}$ | 2.3184 | 1.1592 | | $\beta = 107.770^{\circ}$ | 2.1693 | 1.0847 | | $\gamma = 127.937^{\circ}$ | 2.0591 | 0.9209 | | Volume = 89.579 Å^3 | 1.8840 | 0.8426 | | Density = 11.946 g/cm ³ | 1.7510 | 0.7147 | ## **ACKNOWLEDGEMENTS** Authors wish to express their thanks to Dr. K.V. Rao, IIT, Kanpur and Dr. K.P. Madhusudanan, CDRI, Lucknow for providing instrumental facilities. ## REFERENCES - 1. O. Glemser and E. Wyazometrabi, Naturwissen, 48, 25 (1961). - 2. M.B. Geohring, Quat. Rev., 10, 437 (1956). - 3. D.A. Johnson, G.D. Blyholder and A.W. Cordes, Inorg. Chem., 4, 1970 (1965). - 4. H.G. Heal and J. Nelson, Inorg. Nucl. Chem. Lett., 6, 429 (1970). - 5. H. Schroeder and O. Glemser, Z. Anorg. Chem., 289, 79 (1969). - 6. G.M. Sheldric and R.N. Fordir, J. Fluorine Chem., 1, 13 (1971). - 7. J. Stronod, P. Gebaure and I. Zhorilova, Z. Chem., 19, 255 (1979). - 8. S. Pohl, B. Krebe and O. Glemser, Chem. Commun., 548 (1972). - 9. A.J. Downe and S.C. Peake, Acta Cryst., 359 (1974). - 10. G.A. Wiegners and A. Voz, Acta Cryst., 14, 462 (1961). - 11. W.L. Jolly, K. Maguire and D. Rovinovich, Inorg. Chem., 2, 1304 (1963). - 12. S.S. Yadav and S.P.S. Jadon, J. Indian Chem. Soc., 79, 751 (2001). - 13. —, Asian J. Chem., 14, 1737 (2002). - 14. M.B. Geohring, Inorganic Synthesis, McGrawHill Book Co., N.Y., Vol. VI, p. 124 (1960). - 15. W.L. Wolly and M.B. Geohring, *Inorg. Chem.*, 1, 76 (1962). (Received: 25 February 2003; Accepted: 7 November 2003) AJC-3216