Reactions of Organotin(IV) Compounds with Platinum Complexes. Part IV*: Mechanisms of Reactions between SnR₃Cl Compounds and Pt(0) Complexes ## TALAL A. K. AL-ALLAF Department of Chemistry, College of Basic Sciences Applied Science University, Amman-11931, Jordan E-mail: talal al allaf@hotmail.com The reaction of SnR_3Cl (R = alkyl) with platinum(0) complexes in dichloromethane is found to initiate via insertion of Pt(0) into Sn-R bonds forming complexes containing the $Pt(R)(SnR_2Cl)$ species. The mechanism of formation of Pt-R bonds is believed to proceed via two intermediates containing Pt(II) and Pt(IV) complexes, respectively. Several reactions between SnR_3Cl and $[Pt(C_2H_4)(PPh_3)_2]$ alone and between SnR_3Cl and $[Pt(C_2H_4)(PPh_3)_2]$ in the presence of SnR_4' compounds, have been carried out to trace the intermediates by using $^{31}P-NMR$ spectroscopy. The $^{119}Sn-NMR$ spectra of some of the so formed complexes and other related complexes have been recorded. Key Words: SnR_3Cl Compounds, Pt(0) complexes, Oxidative-addition, Mechanisms. #### INTRODUCTION Earlier workers have reported the reaction of SnR₃Cl (R = alkyl or aryl) with [Pt(C₂H₄)(PPh₅)₂] in CH₂Cl₂ proceeds via insertion of Pt(0) into Sn-R bonds to give the complexes cis-[PtR(SnR₂Cl)(PPh₃)₂]² and not into Sn—Cl bonds to give [PtCl(SnR₃)(PPh₃)₂] as it was believed before³. Later we suggested⁴ that formation of cis-[PtR(SnR₂Cl)(PPh₃)₂] is initiated through two intermediates, the thermodynamically first being the unstable complex, [Pt^(II)Cl(SnR₃)(PPh₃)₂] (1), which ultimately reacts with a further SnR₃Cl molecule to give the second intermediate, [Pt^(IV)R(Cl)(SnR₂)(SnR₂Cl)(PPh₃)²] (2) and this in turn loses SnR₃Cl to give the thermodynamically stable complex cis-[Pt^(II)R(SnR₂Cl)(PPh₃)] (3) (Scheme 1). The intermediate complex (1) has been obtained by treatment of [PtCl(SnR₃)(COD)] {from [Pt(COD)₂] and SnR₃Cl; COD = 1,5-cyclooctadiene} with PPh₃ at -70°C in CH₂Cl₂. Complex (1) slowly forms the trans- isomer and the mixture of isomers is rapidly converted into complex (3) in the presence of SnR₃Cl at temperatures above -30°C. ^{*}For Part(III), see ref. 1. In the present study, we have investigated several reactions between $[Pt(C_2H_4)(PPh_3)_2]$ and SnR_3Cl alone and in the presence of SnR_4' (R = R' or $R \neq R' = Me$, Et, Bu) in order to trace both the intermediates suggested in the mechanism of the reaction. #### **EXPERIMENTAL** All the solvents were dry and oxygen-free, and reactions were carried out under nitrogen or dry argon. The ³¹P-{¹H} NMR spectra were recorded on a Jeol PFT-100 spectrometer at 40.486 MHz (usually in CH₂Cl₂) using trimethylphosphite (TMP) or trimethylphosphate (TMPO) as external references. The ¹¹⁹Sn-{¹H}NMR spectra were performed at City of London Polytechnic, London, UK, on a Jeol FX-90Q spectrometer (with multinuclear probe) at 33.34 MHz using CH₂Cl₂ as solvent. ### Starting Materials K_2PtCl_4 and the organotin(IV) compounds, $SnMe_3Cl$, $SnEt_3Cl$, $SnBu_3Cl$, $SnMe_4$, $SnPt_4$ and $SnBu_4$ were either obtained commercially or prepared by standard methods. The platinum complexes used in this study were prepared by standard methods, $[Pt(C_2H_4)(PPh_3)_2]^5$, cis- $[PtR(SnR_2Cl)(PPh_3)_2]$ (R = Me, Bu) and cis- and trans- $[PtCl(SnMe_2Cl)(PPh_3)_2]^6$, $[PtCl(SnMe_3)(DPPE)]$ and $[PtCl(SnMe_2Cl)(DPPE)]^7$. # Reaction of [Pt(C₂H₄)(PPh₃)₂] with a mixture of SnR₃Cl and SnR₂' In a typical procedure, the complex $[Pt(C_2H_4)(PPh_3)_2]$ (0.15g, 0.2 mmol) was dissolved in CH_2Cl_2 (5 mL) and a mixture of SnR_3Cl (R = Bu) (0.033g, 0.1 mmol) and SnR_4' (R' = Me) (0.18g, 1.0 mmol) was added. The solution was allowed to stand for ca. 90 min at room temperature and then reduced in volume for recording the ^{31}P -NMR spectrum. The corresponding reactions were carried out for R = Me, Et, Bu and R' = Me, Pr^{i} , Bu. A similar procedure was carried out for the reactions between $[Pt(C_2H_4)(PPh_3)_2]$ and a mixture of SnR_2Cl_2 (R = Me, Bu) and $SnMe_4$. # Reaction of cis-[PtBu(SnBu₂Cl)(PPh₃)₂] with SnMe₄ in the presence of [Pt(C₂H₄)(PPh₃)₂] The complex cis-[PtBu(SnBu₂Cl)(PPh₃)₂] {prepared from the reaction between [Pt(C₂H₄)(PPh₃)₂] and SnBu₃Cl}⁶ (0.14 g, 0.1 mmol), together with the complex [Pt(C₂H₄)(PPh₃)₂] (0.075 g, 0.1 mmol) were dissolved in CH₂Cl₂ (5 mL) and a large excess of SnMe₄ was added. After ca. 90 min at room temperature the volume was reduced for the recording of the ³¹P-NMR spectrum. A similar procedure was carried out for the reaction between cis- and trans[PtCl(SnMe₂Cl)(PPh₃)₂] and SnMe₄ in the presence of [Pt(C₂H₄)(PPh₃)₂]. # Reaction of [PtCl(SnMe₃)(DPPE)] with SnMe₃Cl A solution of the complex [PtCl(SnMe₃)(DPPE)]⁷ (0.1 g, 0.13 mmol) in CH₂Cl₂ (0.7 mL) was placed into an NMR tube and SnMe₃Cl (0.06 g, 0.3 mmol) was added at ambient temperature. The yellow solution was allowed to stand for ca. 2 h and the ³¹P-NMR spectrum was recorded. A similar sample was prepared in CD₂Cl₂ for recording of the ¹H-NMR spectrum. #### RESULTS AND DISCUSSION It was originally reported that the triorganotin halides, i.e., SnMe₃Cl were added oxidatively to platinum(0) complexes by insertion into the Sn-Cl bonds³. However, earlier workers² showed this was incorrect, and that the reaction between [Pt(C₂H₄)(PPh₃)₂] and SnMe₃Cl in fact proceeded by insertion into Sn-Me bonds. No firm mechanism for this reaction was suggested at the time, but latter we suggested a mechanism involving platinum(IV) intermediates (Scheme 1). Above ca. 10°C, the complex $[Pt(C_2H_4)(PPh_3)_2]$ reacts with SnR₃Cl to give cis-[PtR(SnR₂Cl)(PPh₃)₂] (3) [R = Me, 1 J(PtP) 2474 Hz (P trans- to Sn) and 2092 Hz (P trans- to Me)], but we suggested that the initial product is which cis-[PtCl(SnMe₃)(PPh₃)₂] (1), is rapidly converted [PtR(SnR₂Cl)(PPh₃)₂] (3) by insertion of (1) into the Sn-R bond of SnR₃Cl. The presumably faster reaction of (1) with the Sn-Cl bond of SnR₃Cl is the unproductive complex [PtCl₂(SnR₃)₂(PPh₃)₂] and neither (1) nor the platinum(IV) intermediate (2) are detectable in reaction mixture by ³¹P-NMR spectroscopy. It should be noted that low temperature (-70°C) reaction between [Pt(C_2H_4)(PPh₃)₂] and SnMe₃Cl in CH₂Cl₂ was carried out in order to trap the intermediate (1) but the ³¹P-NMR spectrum showed that no reaction had occurred. A number of spectra were recorded at 10°C intervals up to 10°C, and at this temperature, a very small amount of an additional species appeared in the spectrum. At room temperature the peaks of this product had increased and the values of δ and J were identical to those of cis-[PtMe(SnMe₂Cl)(PPh₃)₂], no signals attributable to the intermediate cis-[PtCl(SnMe₃)(PPh₃)₂] could be detected. # Attempts to trap the intermediate cis-[PtCl(SnR₃)(PPh₃)₂] (1) Initially the experiments below were carried out with the objective of trapping the proposed intermediate cis-[PtCl(SnR₃)(PPh₃)₂] in the reaction between [Pt(C₂H₄)(PPh₃)₂] and SnR₃Cl . Subsequently such a species, with R = Me, was prepared by another route from the reaction between [PtCl(SnMe₃)(COD)] and PPh₃ in CH₂Cl at -70°C [¹J(PtP) 1946 Hz (P trans- to Sn) and 4516 Hz (P trans- to Cl)]⁷. A large number of reactions were studied in situ by ³¹P-NMR spectroscopy as described below. # Reaction of [Pt(C₂H₄)(PPh₃)₂] with SnR₃Cl in the presence of SnR'₄: The 31 P-NMR spectrum showed that there was no reaction between SnMe₄ and [Pt(C₂H₄)(PPh₃)₂] or cis-[PtBu(SnBu₂Cl)(PPh₃)₂] {prepared from the reaction between [Pt(C₂H₄)(PPh₃)₂] and SnBu₃Cl} in CH₂Cl₂ or benzene during 48 h at room temperature. However, a mixture of SnBu₃Cl (0.1 mmol) and SnMe₄ (1.0 mmol) reacted with [Pt(C₂H₄)(PPh₃)₂] (0.2 mmol) in CH₂Cl₂ during ca. 1.5 h at room temperature to give (in addition to unchanged platinum starting materials), a mixture of two cis-complexes assigned to be cis-[PtBu(SnBu₂Cl)(PPh₃)] (13.5% proportion) and cis-[PtMe(SnMe₂Cl)(PPh₃)₂] (35% proportion) and the decomposition product cis-[PtCl₂(PPh₃)₂)] (8.5% proportion). We thought that this reaction involved initial insertion of platinum(0) into the Sn-Cl bond of SnBu₃Cl (Scheme-2) to give cis-[PtCl(SnBu₃)(PPh₃)₂] (1), which the latter was then either following the course shown in Scheme-1 to give cis-[PtBu(SnBu₂Cl)(PPh₃)₂] (2), or reacting with SnMe₄ to give the platinum(IV) intermediate (3). Complex (3) would then lose SnBu₃Me to give cis-[PtCl(SnMe₃)(PPh₃)₂] (4) which would enter the sequence shown in Scheme 1 to give cis-[PtMe(SnMe₂Cl)(PPh₃)₂] (5). We found in separate experiments that complex (4) readily loses SnMe₃Cl in the presence of PPh₃ to give [Pt(PPh₃)₃]. As mentioned above, neither cis-[PtBu(SnBu₂Cl)(PPh₃)₂] nor [Pt(C₂H₄)(PPh₃)₂] reacted separately with SnMe₄, but the ³¹P-NMR spectrum of a mixture obtained from the reaction between cis-[PtBu(SnBu₂Cl)(PPh₃)₂] (0.1 mmol){prepared from the reaction of [Pt(C₂H₄)(PPh₃)₂] and SnBu₃Cl in equimolar ratio and isolated as described in ref. 2}, [Pt(C₂H₄)(PPh₃)₂] (0.1 mmol), and excess of SnMe₄ in CH₂Cl₂ or benzene at room temperature for 1.5 h, revealed (in addition to unchanged platinum(0) starting material) the presence of two cis-complexes, (2) and (5) (Scheme -) in 14.5 and 37% proportions, respectively and the decomposition product cis-[PtCl₂(PPh₃)₂]. We thought that this reaction might have involved initial insertion of platinum(0) into the Sn-Cl bond of cis-[PtBu(SnBu₂Cl)(PPh₃)₂] to give complex (1) (Scheme 3). Cis-addition of SnMe₄ to complex (1) would then probably occur in the part of the molecule containing the Pt-Cl species, which would be the more reactive, to give complex (2). However, complex (2) would rapidly lose both SnMe₃Cl and SnBu₃Me to give [Pt(PPh₃)₂], which would again react with SnMe₃Cl by the route shown in Scheme-1, to form the thermodynamically stable complex (4) (Scheme-3), viz, cis-[PtMe(SnMe₂Cl)(PPh₃)₂] at room temperature. However, since SnMe₄ in fact reacts with cis-[PtBu(SnBu₂Cl)(PPh₃)₂] in the presence of [Pt(C₂H₄)(PPh₃)₂], the earlier reaction between [Pt(C₂H₄)(PPh₃)₂], SnBu₃Cl and SnMe₄ cannot necessarily be attributed to the intermediate cis-[PtCl(SnBu₃)(PPh₃)₂] and the very similar product distribution from the two experiments indicates a common origin for the mechanism depicted in Scheme-3. Similar results were obtained when the reaction was carried out using $[Pt(C_2H_4)(PPh_3)_2]$ with $SnEt_3Cl$ and $SnMe_4$ in one experiment and with $SnBu_3Cl$ and $SnEt_4$ in another experiment. Scheme-3 When a similar procedure was carried out for the reaction between $[Pt(C_2H_4)(PPh_3)_2]$, $SnBu_3Cl$ and $SnPr_4^i$ in CH_2Cl_2 for 2 h, the $^{31}P-\{^{1}H\}$ NMR spectrum revealed (in addition to the unreacted platinum starting material) the presence of cis- $[PtBu(SnBu_2Cl)(PPh_3)_2]$ and a small amount of cis- $[PtCl_2(PPh_3)_2]$, and none of the expected product cis- $[PtPr^i(SnPr_2^iCl)(PPh_3)_2]$. It seems that $SnPr_4^i$ does not enter into the reaction. Similar results were obtained from a mixture of $[Pt(C_2H_2)(PPh_3)_2]$, SnMe₃Cl, and an excess of SnBu₄ in CH₂Cl₂. After 2 h the ³¹P-NMR spectrum showed (in addition to the unreacted platinum starting material) the presence of cis-[PtMe (SnMe₂Cl)(PPh₃)₂] as the major component and a small amount of cis-[PtCl₂(PPh₃)₂], and none of the expected product cis-[PtBu(SnBu₂Cl)(PPh₃)₂]. This shows that like SnPr₄ⁱ, SnBu₄ does not enter the reaction. # Reaction of [Pt(C₂H₄)(PPh₃)₂] with SnR₂Cl₂ in the presence of SnMe₄ We showed above that no reaction occurred between [Pt(C₂H₄)(PPh₃)₂] and SnMe₄. 31 P-NMR spectroscopy showed that there was no reaction between (mixed) cis- and trans- [PtCl(SnR₂Cl)(PPh₃)₂] {prepared as described in ref. 6 from the reaction of [Pt(C₂H₄)(PPh₃)₂] with SnR₂Cl₂ (R = Me, Bu)} and SnMe₄ in CH₂Cl₂ at room temperature even after 4 h. However, when a mixture of SnMe₂Cl₂ (0.1 mmol) and SnMe₄ (1.0 mmol) was added to [Pt(C₂H₄)(PPh₃)₂] (0.2 mmol) in CH₂Cl₂ and the solution was kept at room temperature for 3 h, the ³¹P-NMR spectrum revealed (in addition to the unchanged platinum starting material) the presence of a mixture of complexes, cis- and trans- [PtCl(SnMe₂Cl)(PPh₃)₂] (19 and 33% proportions, respectively), cis-[PtMe(SnMe₂Cl)(PPh₃)₂] (16.5 proportion %) and the decomposition product cis-[PtCl₂(PPh₃)₂] (10% proportion). These results also support the mechanism outlined in Scheme 3; i.e., it can be assumed that $[Pt(C_2H_4)(PPh_2)_2)]$ reacted initially with SnMe₂Cl₂ to give cis- and trans- [PtCl(SnMe₂Cl)(PPh₂)₂)], and the latter then reacted with SnMe₄ in the presence of [Pt(C₂H₄)(PPh₃)₂] to give the complex cis-[PtMe(SnMe₂Cl)(PPh₃)₂]. This was shown clearly to be the case by the following experiment. A mixture of cis- and trans- [PtCl(SnMe₂Cl)(PPh₃)₂] {prepared as in ref. 6 from the reaction of [Pt(C₂H₄)(PPh₃)₂] with SnMe₂Cl₂} (0.1 mmol), SnMe₄ (0.1 mmol) in CH₂Cl₂ was set aside for 3 h. The ³¹P-NMR spectrum revealed (in addition to the unchanged platinum starting material) the presence of the same complex as mentioned above and in almost the same proportions. It is evident that the amount of unreacted $[Pt(C_2H_4)(PPh_3)_2]$ is less in the case of $SnMe_2Cl_2$ than in the case of SnR_3Cl as can be seen from the proportion of the unreacted $[Pt(C_2H_4)(PPh_3)_2]$, suggesting that the extent of reaction between $[Pt(C_2H_4)(PPh_3)_2]$ and $SnMe_2Cl_2$ (as inferred from the relative intensities in the ³¹P-NMR spectrum of the Pt(0) complex and the products) is somewhat larger than could be obtained from the known amounts of $Pt(0) + SnR_2Cl_2$ used. This might be a misleading observation, since the intensities of the ³¹P signals obtained by ³¹P-NMR spectroscopy depend on the relaxation times and other factors and not simply on the concentration of the complex. Additional information was provided by three experiments below: - (A) When a solution of [Pt(C₂H₄)(PPh₃)₂] in CH₂Cl₂ was kept for 48 h at room temperature, the ³¹P-NMR spectrum showed that no decomposition to *cis*-[PtCl₂(PPh₃)₂] had occurred, and no other product was detected. - (B) The 31 P-MNR spectrum of the mixture obtained from the reaction between $[Pt(C_2H_4)(PPh_3)_2]$ (0.2 mmol) and a mixture of $SnBu_2Cl_2$ (0.1 mmol) and $SnMe_4$ (1.0 mmol) in CH_2Cl_2 (with complete exclusion of air and moisture), revealed after ca. 3 h (in addition to the unreacted platinum starting material in 39% proportion), the presence of the complexes shown in the following equation. $$\begin{split} [\text{Pt}(\text{C}_2\text{H}_4)(\text{PPh}_3)_2] + & \text{SnBu}_2\text{Cl}_2 + \text{SnMe}_4 \rightarrow cis\text{-}[\text{PtMe}(\text{SnMe}_2\text{Cl})(\text{PPh}_3)_2] \\ 0.2 \text{ mmol} & 0.1 \text{ mol} & 1.0 \text{ mmol} & \text{I } (11\%) \\ & cis\text{-} \text{ and } \textit{trans}\text{-}[\text{PtCl}(\text{SnBu}_2\text{Cl})(\text{PPh}_3)_2] + cis\text{-}[\text{PtCl}_2(\text{PPh}_3)_2] \\ & \text{II } (cis\text{-}, 29\%, \textit{trans}\text{-}, 13.5\%) & \text{III } (7\%) \end{split}$$ When the mixture was set aside for a further 15 h, the ³¹P-NMR spectrum showed that complex (II) had been totally converted into complexes (I) and (III) [as shown from the observed proportion (I), 34; (II), 0; (III), 32%] and the proportion of $[Pt(C_2H_4)(PPh_3)_2]$ had fallen by only 5%. Since CH_2Cl_2 had little effect on $[Pt(C_2H_4)(PPh_3)_2]$, the decomposition product cis- $[PtCl_2(PPh_3)_2]$ must therefore have been produced from the decomposition of complex (II) and not from $[Pt(C_2H_4)(PPh_3)_2]$. (C) When solutions of the mixed *cis*- and *trans*-[PtCl(SnBu₂Cl)(PPh₃)₂] complexes in CH₂Cl₂, with or without the presence of [Pt(C₂H₄)(PPh₃)₂], were kept for 15 h at room temperature, the ³¹P-NMR spectra showed that no changes had occurred. It is concluded from these observations that the complex $[Pt(C_2H_4)(PPh_3)_2]$ was not affected by the solvent, by the complex $[PtCl(SnBu_2Cl)(PPh_3)_2]$, or by $SnMe_4$ on its own, but that reaction took place in a mixture of all three reagents to give the complex cis- $[PtMe(SnMe_2Cl)(PPh_3)_2]$ and a small amount of the decomposition product cis- $[PtCl_2(PPh_3)_2]$. This is good support for the mechanism outlined in **Scheme 3** above. # Reaction between [PtCl(SnMe3)(DPPE)] and SnMe3Cl In order to prevent the possibility of *cis*- and *trans*- isomerization, we used the chelating ligand 1,2-bis(diphenylphosphino) ethane (DPPE) in the following reactions. The reaction of [PtCl(SnMe₃)(DPPE)] with SnMe₃Cl was carried out in CH₂Cl₂ at room temperature in order to compare the results with those obtained earlier from the reaction of SnMe₃Cl with the corresponding PPh₃ complex. Thus the complex [PtCl(SnMe₃)(DPPE)], prepared as described in our previous work⁷, was dissolved in CH₂Cl₂ at room temperature and SnMe₃Cl was added (see Experimental). The solution was set aside for *ca.* 2 h; then its ³¹P-NMR spectrum was recorded; this revealed the presence of [PtCl(SnMe₂Cl)(DPPE) formed in approximately 100% yield. The ¹H-NMR spectrum was also recorded for the mixture obtained from the reaction of [PtCl(SnMe₃)(DPPE)] and a slight excess of SnMe₃Cl in CD₂Cl₂ at room temperature; the ¹H NMR spectrum was recorded after *ca*. 15 min and showed a resonance at δ 0.07 ppm, assigned to the protons of SnMe₄. The assignment was confirmed by addition of SnMe₄ which gave no new signal. The spectrum also showed resonances for PtSn-Me which indicated the presence of starting material [PtCl(SnMe₃)(DPPE)] and the product [PtCl(SnMe₂Cl)(DPPE), as well as free SnMe₃Cl. No resonance from the protons of free SnMe₂Cl₂ was observed, which means that the complex [PtCl(SnMe₃) (DPPE) does not behaves as a catalyst for the disproportionation of SnMe₃Cl into SnMe₂Cl₂ and SnMe₄. The course of the reaction is represented by Scheme-4. The product must clearly be derived from a platinum(IV) complex containing two moles of SnMe₃Cl. The reaction of complex (1) (Scheme-4) probably proceeded *via* its insertion into the Sn-Me bond of SnMe₃Cl to give the (undetected) platinum(IV) intermediate (2). The latter, which contains two moles of SnMe₃Cl, for unknown reason eliminates SnMe₄ rather than SnMe₃Cl (as suggested for the corresponding PPh₃ complex in the machanism shown in Scheme-1 above). TABLE-1 119 Sn-{ ¹H} NMR DATA, δ (ppm) AND J(Hz) FOR COMPLEXES CONTAINING Pt-Sn BONDS Scheme-4 | Complex ^a | δ | ¹ J(¹⁹⁵ Pt- ¹¹⁹ Sn) | ² J(¹¹⁹ Sn- ³¹ P) ^b | | |---------------------------------------------------------------------|--------|-------------------------------------------------------|------------------------------------------------------------------|--------------| | | | | Sn trans- to P | Sn cis- to P | | cis-[PtCl(SnMe ₂ Cl)(PPh ₃) ₂] | 119 | Obscured | 2264 (2265) | 70 (59) | | trans-[PtCl(SnMe ₂ Cl)(PPh ₃) ₂] | 43.7 | 14783 | _ | _ | | cis-[PtMe(SnMe ₂ Cl)(PPh ₃) ₂] | 190 | 13831 | 2276 (2274) | 177 (175) | | cis-[PtPh(SnPhCl ₂)(PPh ₃) ₂] | 56.4 | 16881 | 2966 (2961) | 195 (193) | | cis-[PtPh(SnPh ₂ Cl)(PPh ₃) ₂] | 33 | 14081 | 2393 (2400) | 147 (146) | | cis-[PtPh(SnPh ₃)(PPh ₃) ₂] | -104.7 | Obscured | 1935 (1938) | 165 (149) | | [Pt(SnMe ₂)(DPPE)] | -21.2 | Obscured | 1556 (1553) | 140 (141) | ^aFor the ³¹P-NMR data of these complexes and other related ones, see refs. 2, 6, 7. Although this reaction did not give the expected product [PtMe(SnMe₂Cl) (DPPE)], it still offers very good support for the mechanism in **Scheme-1**, because: - 1. the reaction proceeded *via* insertion of platinum(II) complexes into the Sn-Me bonds, as suggested for the mechanism in **Scheme-1**. - 2. The reaction must involve a platinum(IV) intermediate, since the formation of [PtCl(SnMe₂Cl)(DPPE)] could not be otherwise explained. The reaction of [PtCl(SnMe₃)(DPPE)] with SnMe₃Cl was shown as follows to be irreversible. The complex [PtCl(SnMe₂Cl)(DPPE)] was prepared and isolated⁷. The ³¹P-NMR spectrum of a mixture obtained from the reaction between [PtCl (SnMe₂Cl)(DPPE)] and a large excess of SnMe₄ in CH₂Cl₂ at room temperature for 2 h revealed the presence of the platinum starting material only. The reaction was repeated with benzene as solvent instead of CH₂Cl₂; the solution was kept at 50°C for 2 days then the solvent was removed and the residual yellowish solid was dissolved in CH₂Cl₂. The ³¹P-NMR spectrum of the solution revealed (in ^bNumbers in parentheses were obtained from ³¹P-NMR spectra and are listed here for comparisons. addition to the platinum starting material) the presence of two complexes having the parameters δ –98.5 ppm, $^{1}J(PtP)3623$ Hz (29% proportion), identified as $[PtCl_{2}(DPPE)]^{8}$ and δ –96.2 ppm, $^{1}J(PtP)$ 1736 Hz; δ –97.0 ppm, $^{1}J(PtP)$ 4214 Hz (35% proportion) identified as $[PtMe(Cl)(DPPE)]^{9}$; the complex $[PtCl(SnMe_{3})(DPPE)]$ was not detected. Furthermore, in another experiment using Pt(0) with different phosphine we showed¹⁰ that the reaction between [Pt(PCyc₃)₂] and SnMe₃Cl forms *trans*-[PtCl(SnMe₃)(PCyc₃)₂]. The latter does not go further to give [PtMe(SnMe₂Cl) (PCyc₃)₂] either because the former does not add another molecule of SnMe₃Cl to give Pt(IV) intermediate (Scheme-1) or the intermediate Pt(IV) cannot be formed at all because of the steric hindrance of the cyclohexyl groups. #### AKNOWLEDGEMENTS This research work was carried out in the School of Molecular Sciences at Sussex University, Brighton BN1 9QJ, UK, in association with Prof. C. Eaborn and Dr. A. Pidcock. The author is very grateful to C.E. and A.P. for their kind help and advice during the work. #### REFERENCES - 1. T.A.K. Al-Allaf, J. Organometal. Chem., 654, 21(2002). - G. Butler, C. Eaborn and A. Pidcock, J. Organometal. Chem., 184, 367 (1980); C. Eaborn, A. Pidcock and B.R. Steele, J. Chem. Soc. Dalton, 767 (1976). - A.J. Layton, R.S. Nyholm, G.A. Pneumaticakis and M.L. Tobe, Chem. Ind. (London), 465 (1967); M.C. Baird, J. Inorg. Nucl. Chem., 29, 367 (1967); M. Akhtar and H.C. Clark, J. Organometal. Chem., 22, 233 (1970). - 4. T.A.K. Al-Allaf, C. Eaborn, K. Kundu and A. Pidcock, J. Chem. Soc. Chem. Commu., 55 (1981). - 5. C.D. Cook and G.S. Jouhal, J. Am. Chem. Soc., 90, 1464 (1968). - G. Butler, C. Eaborn and A. Pidcock, J. Organometal. Chem., 181, 47 (1979); 185, 367(1980). - 7. T.A.K. Al-Allaf, J. Organometal. Chem., 590, 25 (1999). - T.A.K. Al-Allaf, J. Chem. Res. (S), 101 (2003), and refers. therein; K.J. Odell, D. Phil. Thesis, University of Sussex, 1976. - 9. C. Eaborn, K.J. Odell and A. Pidcock, J. Chem. Soc. Dalton, 357 (1978). - 10. T.A.K. Al-Allaf, Asian J. Chem., 11, 348 (1999). (Received: 30 May 2003; Accepted: 7 November 2003) AJC-3207