Equilibrium Studies on Some Ternary Complexes of Cu(II) with 1,3-Diamino Propane as Primary Ligand and O-O Donor Atoms as Secondary Ligands and its Comparison with Binary Complexes

SANGITA SHARMA*, JAYSHREE N. PATEL, J.J. VORA and J.D. JOSHI†
Department of Chemistry, North Gujarat University, Patan-384 265, India

The formation constants of the mixed ligand complexes (CuAL) at 1:1:1 optimum molar concentration of metal as Cu(II); primary ligand, A=1,3-diamino propane (1,3-DiaP) and O-O donor atoms as secondary ligand, L= salicylic acid, DL-malic acid, DL-mandelic acid, DL-lactic acid have been determined by modified form of Irving-Rossotti titration technique in aqueous media at constant ionic strength $\mu=0.2~M~dm^{-3}$ at $30\pm0.1^{\circ}C$. The difference between the stability of ternary complexes and the corresponding binary complexes has been expressed in terms of parameter $\Delta \log K_T$. The stabilities of the ternary complexes are explained in terms of π -basicities, structures of secondary ligand and ring size of chelate. $\Delta \log K_T$ values are negative which suggests favourable formation of ternary complexes. The variations of $\Delta \log K_T$ have been explained in terms of $M \to L$ π -interaction, size of the chelate ring and steric factors.

Key Words: Formation constant, Potentiometric studies, Copper(II), Ternary complexes, Steric factors.

INTRODUCTION

Zinc and copper which are used in higher concentration than any of the non-ferrous transition metals especially bound by the protein metallothionein in biological systems^{1, 2}. In biological systems copper binding is distinct from zinc, with twelve sites per molecule *via* clusters of —SH groups^{3, 4}. The unusual metal environments of metal thioneins have attracted the attention of bioinorganic chemists⁵⁻⁷. In view of this fact several ternary complexes of transition metals are well studied⁷⁻¹².

In the present work, the formation constants of mixed ligand system (MAL) where A=1,3-diamino propane and L= salicylic acid, DL-malic acid, DL-mandelic acid and DL-lactic acid determined by modified form of Irving-Rossotti titration technique in aqueous media at $30\pm0.1^{\circ}$ C are reported ^{13, 14}. The order of stability of mixed ligand complexes is explained in terms of basicity and structure of primary ligand (A) and secondary ligand (L).

[†]Department of Chemistry, S.P. University, Vallabh Vidyanagar, Gujarat-388 120, India.

144 Sharma et al. Asian J. Chem.

EXPERIMENTAL

1,3-Diamino propane, salicylic acid, DL-malic acid, DL-mandelic acid and DL-lactic acid (AnalaR), sodium perchlorate (Fluka), perchloric acid (Baker, analyzed) were used. A stock solution of Cu(II) perchlorate solution was standardized by complexometric EDTA titrations¹⁵. Carbonate-free NaOH solution was standardized by reported method¹⁶.

Conductivity water is used throughout the experimental work. Digital μ -361 pH-meter with readability ± 0.01 with combined glass calomel electrode has been used for potentiometrically. Stoichiometrically 1:1:1 concentration of Cu, A and L is maintained in the solution. Five sets of the solutions were prepared containing (1) known amount of free $HClO_4$ (2) free $HClO_4$ + known amount of primary ligand + known amount of metal perchlorate (4) free $HClO_4$ + known amount of secondary ligand (5) free $HClO_4$ + known amount of primary ligand + known amount of metal perchlorate.

Total volume of each mixture was raised to 50 mL using conductivity water.

TABLE-1
MIXED LIGAND FORMATION CONSTANTS OF Cu(II)-HETEROCHELATES
AT TEMPERATURE $30 \pm 0.1^{\circ}$ C, $\mu = 0.2$ M(NaClO ₄)

Ligand	pK ₁ ^H	pK ₂ ^H	pK ₃ ^H	log K ^{Cu*} _{Cu·L}	log KCu·L*	log KCu-A-L	Δ log K _T
Salicylic acid	11.44	2.93		10.6	5.85	6.93	-3.67
DL-Malic acid	11.27	5.34	3.38	8.13	3.59	7.08	-1.05
DL-Mandelic acid	11.60	3.37			_	6.93	****
DL-Lactic acid	11.41	3.83		7.86	4.84	6.86	-1.00

^{*}Values are taken from the literature:

 $\Delta \log K_T = \log K_{Cu \cdot A \cdot L}^{Cu \cdot A} - \log K_{Cu \cdot L}^{Cu}$

where: A = 1,3-Diamino propane; L = 0-O donor atoms

RESULTS AND DISCUSSION

From titration data given in Fig. 1, $\overline{n}H$, \overline{n} , pL, pL – log $(1 - \overline{n}/\overline{n})$ were calculated on the basis of literature method ^{14, 17} and binary and ternary formation constants are presented in Table-1.

The stability constants of the ternary complexes can be determined using two approaches:

- (1) Formation of [Cu·A·L] takes place in two steps
 - (a) $Cu^{2+} + A \rightarrow [Cu \cdot A]^{2+}$ and
 - (b) $[Cu \cdot A]^{2+} + L \rightleftharpoons [Cu \cdot A \cdot L]$; and
- (2) Simultaneous reaction between the metal ion and two ligands resulting in the existence of various species namely AH^+ , A, LH_2^+ , LH, L^- , $[CuAL_2]$, $[CuAL]^+$, $[CuA]^{2+}$, $[CuA]^{2+}$, $[CuA]^{2+}$, $[CuA]^{2+}$ and $[CuL_2]^{18}$. (Herein the charges on

Fig. 1. Cu(II)-1,3-Diaminopropane salicylic acid system temp. $30 \pm 0.1^{\circ}$ C. (1) Acid, (2) 1,3-Diamono propane, (3) 1: 1 molar ratio of Cu(II)-1,3-diamino propane, (4) Salicylic acid, (5) 1:1:1 molar ratio of Cu(II)-1,3-diamino propane salicylic acid

the species are omitted for convenience.) The $\Delta \log K_{MAL}^{MA}$ values obtained by the two methods agree well indicating that the formation of [CuA] is almost complete before the pH where it starts combining with secondary ligands O-O donor atoms. The mixed ligand formation constants of $\Delta \log K_{CuAL}^{CuA}$ are in the following order.

DL-Malic acid > Salicylic acid = DL-Mandelic acid > DL-Lactic acid

The order is explained in accordance with the basicities of the ligands and structures of hydroxy acids. There is N \rightarrow M σ -bonding; there exists M \rightarrow N π-interaction due to back donating tendency. As a result of M—N bond the concentration of electrons around the metal ion in M(1,3-DiaP)²⁺ does not increase significantly and electronegativing of metal ions in M(1,3-DiaP)²⁺ remains same as $[M(H_2O)_n]^{2+}$. In the present study DL-malic acid has highest value of $\Delta \log K_{CuAL}^{CuA}$ because DL-malic acid is a tridentate ligand; the dissociation of first -COOH group brings inductive effect which reduces the dissociaton of second —COOH or —OH group and makes it more ligating.

Salicylic acid, DL-malic acid, DL-mandelic acid and DL-lactic acid are all

146 Sharma et al. Asian J. Chem.

bidentate in nature. Salicylic acid and DL-mandelic acid form more stable complexes than DL-lactic acid. The reason may be due to having benzene ring in their structure. Salicylic acid forms six membered chelates and DL-mandelic acid forms five-membered chelates; so salicylic acid should form more stable complexes than DL-mandelic acid although pK₁^H value for DL-mandelic acid is higher than salicylic acid. In salicylic acid, $\Delta \log K_{Cu\cdot AL}^{Cu\cdot A}$, the values for ternary complex are equal to DL-mandelic acid. The steric hindrance due to structure and approach towards [Cu(II)-1,3-DiaP]²⁺ complex may be another cause for lowering the value of DL-mandelic acid and making it equal to salicylic acid. DL-lactic acid is monocarboxylic hydroxy acid and the inductive effect of —CH₃ groups makes lactic acid less acidic in comparison to other hydroxy acids.

REFERENCES

- A.S. Prasad, Trace Elements and Iron in Human Metabolism, Plenum Medical Book Company (1978).
- 2. E.C. Theil, Adv. Inorg. Biochem., 5, 1 (1983).
- 3. A.H. Robbins, D.E. McRee, M. Williamson, S.A. Collett, N.H. Xuong, W.F. Furey, B.C. Want and C.D. Stout. *J. Mol. Biol.*, 221, 1269 (1991).
- 4. N. Kitajima, Adv. Inorg. Chem., 39, 1 (1992).
- 5. E. Friend, Biochemistry of Essential Ultra Trace Elements, Plenum Press, New York (1984).
- 6. J.P. Williams and J.J.R. Frausto da Silva, Coord. Chem. Rev., 247, 200 (2000).
- A. Sigel and H. Sigel, Metal Ions in Biological Systems, Marcell-Dekker, New York, pp. 1-38 (1973-2001).
- 8. M.S. Nair and M.A. Neelakantan, *Indian J. Chem.*, 41A, 2088 (2002).
- 9. F. Khan and K.A. Kesharwani, J. Indian Chem. Soc., 80, 47 (2003).
- 10. M.P. Brahmbhatt, S. Sharma, J.J. Vora and J.D. Joshi, Asian J. Chem., 15, 373 (2003).
- 11. G.L. Eichhom, Inorganic Biochemistry, Elsevier, Amsterdam, Vols. 1 and 2 (1973).
- 12. C.H. Evans, Biochemistry of Lanthanides, Plenum Press, New York (1990).
- 13. H.M. Irving and H.S. Rossotti, J. Chem. Soc., 2904 (1954).
- 14. M.V. Chidambaram and P.K. Bhattacharya, J. Inorg. Nucl. Chem., 32, 3271 (1970).
- 15. H.A. Flaschka, EDTA Titrations, Pergamon, Oxford (1964).
- A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longmans, London, p. 296 (1978).
- 17. P.K. Bhattacharya and M.V. Reddy, J. Prakt. Chem., 69, 321 (1970).
- 18. D.N. Kulkarni, J. Indian Chem. Soc., 77, 397 (2000).

(Received: 20 March 2003; Accepted: 10 September 2003) AJC-3156