Physico-Chemical Studies of Co(II) and Ni(II) Complexes with 2-Thiophene Hydroxamic Acid and N-Phenyl 2-Thiophene Hydroxamic Acid

SANJAY KUMAR SINGH[†], SHIKHA SINGH[†], S.C. SINGH[†] and RAJESH DHAKAREY*

Department of Chemistry, R.B.S. College, Agra-282 002, India

Some cobalt(II) and nickel(II) complexes of 2-thiophene hydroxamic acid and N-phenyl 2-thiophene hydroxamic acid have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, IR and electronic spectral data. An octahedral geometry has been assigned to all the isolated complexes.

Key Words: Co(II), Ni(II), Complex, 2-Thiophene hydroxamic acid, N-Phenyl-2-thiophene hydroxamic acid

INTRODUCTION

Hydroxamic acids (RCONHOH) are chemical compounds first reported by Lossen in 1869¹. Extensive work has been carried out on their formations, reactions and structure in the ground state^{2, 3}. The main reason for this interest is that this type of molecule contains the fragment of the simplest protein structure: HNC=O. The progress in hydroxamic acids chemistry has been stimulated by the isolation of naturally occurring acids, which are active as antibiotics, antitumour and antifungal agents and specific enzyme inhibitors⁴. They also play an important role in iron uptake and metabolism⁵.

In the present paper, we report the synthesis and characterization of 2-thiophene hydroxamic acid (THA) and N-phenyl-2-thiophene hydroxamic acid (NPTHA) and their Co(II) and Ni(II) complexes.

EXPERIMENTAL

All the chemicals used were of AR grade.

Synthesis of Ligands

(I) Preparation of 2-Thiophene Hydroxamic Acid (THA)

An aqueous solution of 5.30 g (0.05 M) of sodium carbonate in 25 mL of water was added to 25 mL ethereal solution of 3.47 g (0.05 M) of finely powdered hydroxylamine hydrochloride. This mixture was stirred well using a mechanical stirrer and the temperature of the mixture was maintained about 0°C by external

[†]Department of Chemistry, C.L. Jain College, Firozabad-283 203, India.

10 Singh et al. Asian J. Chem.

cooling using freezing mixture. 7.30 mL (0.05 M) thiophene 2-carbonyl chloride in 25 mL diethyl ether was added to this mixture very slowely (in ca. 1 h) with constant stirring. After the complete addition of carbonyl chloride solution, the stirring was continued for another 30 min. Almost 80% of the product was precipitated during the process of reaction. Some of the product, which was dissolved in ether layer during the process of coupling reaction was recovered from the ether layer by distillation under reduced pressure. The total product was triturated with sodium hydrogen carbonate and then repeatedly washed with cold water to remove the acidic impurities.

The crude thiophene hydroxamic acid thus obtained was dissolved in ethyl acetate and the recrystallized thiophene hydroxamic acid was obtained by keeping the filtered product at room temperature and dried over P_2O_5 in a vacuum desiccator. Yield = 8.50 g (crude); 4.00 g (recrystallized).

(II) Synthesis of N-phenyl 2-Thiophene Hydroxamic Acid (NPTHA)

25 mL of ethereal solution of 5.45 g (0.05 M) of finely powdered phenyl hydroxylamine was added to an aqueous solution of 5.30 g (0.05 M) sodium carbonate in 25 mL of water. This mixture was stirred well using a mechanical stirrer and the temperature of the mixture was maintained to about 0°C by external cooling using freezing mixture. 7.30 mL (0.05 M) thiophene 2-carbonyl chloride in 25 mL diethyl ether was added to this mixture very slowly (in ca. 1 h) with constant stirring. After the complete addition of carbonyl chloride solution, the stirring was continued for 30 min. Almost 80% of the product was precipitated during the process of the reaction. Some of the product, which was dissolved in ether layer during the process of coupling reaction, was recovered from the ether layer by distillation under reduced pressure. The total product was triturated with sodium hydrogen carbonate and then repeatedly washed with cold water to remove the acidic impurities.

The crude N-phenyl 2-thiophene hydroxamic acid, thus obtained, was dissolved in ethyl acetate and the recrystallized N-phenyl 2-thiophene hydroxamic acid was obtained by keeping the filtered product at room temperature and dried over P_2O_5 in a vacuum desiccator. Yield = 9.10 g (crude); 6.00 g (recrystallized).

Preparation of the Metal Complexes

The metal acetate/chloride (0.005 M, 25 mL) in ethanol was added dropwise to a solution of the ligand THA (0.01 M, 25 mL) or ligand NPTHA (0.01 M, 25 mL) in the same solvent. The resulting mixture was stirred for 30 min. and refluxed for 1.5 h on a water both, 2 mL ammonia solution was slowly added to this solution and again refluxed for 1 h. After this the hot solution was filtered and the filtrate was kept at room temperature for crystallization. The crystals were obtained after 24 h, washed with water, alcohol followed by ether. Finally the crystals were dried over P_2O_5 in a vacuum desiccator.

The elemental analysis of carbon, hydrogen and nitrogen, infrared spectra of the ligands and their metal complexes were recorded in KBr on Perkin's Elmer 577 spectrophotometer in the region ca. 4000–200 cm⁻¹, mass spectra of the ligands were recorded in the region 50–350 MHz and NMR spectra of the ligands

were recorded at RSIC, CDRI, Lucknow. Magnetic susceptibility measurements of the synthesised complexes were carried out at room temperature on EG & G Model 155 VSM (vibrating sample magnetometer) at RSIC, IIT, Chennai. The electronic spectra of complexes in solution (H2O/DMF) were recorded on Systronics-106 at room temperature at the Department of Chemistry, R.B.S. College, Agra.

RESULTS AND DISCUSSION

Characterization of the Ligands

- (a) 2-Thiophene hydroxamic acid (THA): m.f. = $C_5H_5NO_2S$, m.p. = 105°C. IR Spectra: bands at ca. 3211 v(OH), ca. 1650 v(C=O), ca. 1355 v(C-N), ca. 944 v(N-O) and ca. 858 v(C-S-C). Mass spectra: m/e = 126 (M^+), 111 (M^+), 84 (M^+). Elemental analysis: % found (calculated): C = 47.25 (46.95), H = 2.75 (3.49), N = 5.75 (5.09). NMR spectra: Chemical shifts were (observed as singlet), aromatic proton 7.10-7.70, thiophene due to proton 7.10-7.30, hydroxy proton 7.99, N-H due to aromatic proton 3.90 singlet.
- (b) N-Phenyl 2-thiophene hydroxamic acid (NPTHA): m.f. = $C_{11}H_0NO_2S$, m.p. = 80°C. IR spectra: bands at ca. 3285 v(OH), ca. 1645 v(C=O), ca. 1355 v(C-N), ca. 976 v(N-O) and ca. 849 v(C-S-C). Mass spectra: m/e = 219 (M^{+}) , 202 (M^{+}) , 142 (M^{+}) , 111 (M^{+}) , 84 (M^{+}) . Elemental analysis: % found (calculated): C = 59.30 (60.27), H = 3.35 (4.10), N = 4.57 (6.39). NMR spectra: Chemical shifts were (observed as singlet), aromatic proton 7.10-7.70, proton due to thiophene 7.07-7.25, hydroxy proton 7.98 singlet.

The analytical results, melting points, colour and magnetic moments of the complexes are presented in Table-1.

The magnetic moment data are presented in Table-1. The magnetic moment values of Co(II) complexes fall in the range 4.25-4.43 B.M. expected for octahedral geometry which are quite higher than the spin only values of 3.87 B.M., this can be explained on the basis of octahedral symmetry involving a high degree of orbital contribution due to the three fold degeneracy of the ⁴T₁₀ ground state. The magnetic moment values of Ni(II) complexes lie between 2.76-2.95 B.M. These values are slightly higher than the spin only value of (2.83 B.M.) probably due to slight distortion from the pure octahedral to D_{4h} symmetry. This is not uncommon in d⁸ configuration because of Jahn-Teller effect.

The electronic spectra of the Co(II) complexes showed the presence of three bands at around 11429-11905, 15152-17241, 20202-20978 cm⁻¹ corresponding to the transitions ${}^4T_{1g} \rightarrow {}^4T_{2g}(v_1)$, ${}^4T_{1g}(F) \rightarrow {}^4A_{1g}(v_2)$ and ${}^4T_{1g}(F) \rightarrow {}^4A_{1g}(v_3)$ respectively. The values of transition v_1, v_2 and v_3 were obtained by using Konig's equation⁶. The ligand field parameters B and the ligand field splitting energy (10 Dq) in the Co(II) complexes were calculated.

Following the Konig's equations v_1 was used along with observed v_1 and v_3 to calculate various parameters such as 10Dq, B, C, F_2 , F_4 , β_{35} and f etc. for the Co(II) complexes, (Tables 2 and 3).

÷

PHYSICAL PROPERTIES, ANALYTICAL DATA AND MAGNETIC MOMENT VALUES OF Co(II) and Ni(II) COMPLEXES TABLE-1

rn i sical rno	JEEN IES,	און ודעאוע	י אועל זר	OFENIES, RIVEL HOLD DATA AND MACHINE MOMENT VIDOLD OF COCKET CONTROLLED	IC INCOME.	1		(T) (T)		
		Physical	Physical Properties			Analytica	Analytical data, Found (Calcd.)	I (Calcd.)		í
Complexes	m.p.	Colour	m.w.	State	၁	Н	Z	נו	M	(B.M.)
Co(C ₅ H ₅ NO ₂ S) ₂ Cl ₂	155	Light	416.16	Solid (crystalline)	28.94 (28.86)	2.48 (2.42)	6.81 (6.73)	17.08 (17.03)	14.24 (14.16)	4.25
Co(C11H9NO2S)2Cl2	162	Green	568.35	Solid (powder)	46.52 (46.49)	3.28 (3.19)	4.98 (4.92)	12.58 (12.47)	10.42 (10.36)	4.43
Co(C5H5NO2S)2(CH3COO)2	8	Brown	463.35	Solid (powder)	36.34 (36.28)	3.52 (3.48)	6.11 (6.04)	I	12.81 (12.71)	4.29
Co(C ₁₁ H ₉ NO ₂ S) ₂ (CH ₃ COO) ₂	170	Brown	615.54	Solid (powder)	50.84 (50.73)	3.94 (3.92)	4.62 (4.55)	I	9.65	4.40
Ni(C ₅ H ₅ NO ₂ S) ₂ Cl ₂	185	Light brown	415.92	Solid (powder)	28.92 (28.87)	2.48 (2.42)	6.81 (6.73)	17.11 (17.04)	14.18 (14.11)	2.76
Ni(C ₁₁ H ₉ NO ₂ S) ₂ Cl ₂	155	Brown	568.12	Solid (powder)	46.58 (46.51)	3.23 (3.19)	4.98 (4.93)	12.52 (12.48)	10.38 (10.33)	2.95
Ni(C ₅ H ₅ NO ₂ S) ₂ (CH ₃ COO) ₂	165	Brown	463.11	Solid (powder)	36.36 (36.30)	3.52 (3.48)	6.09	1	12.72 (12.67)	2.75
Ni(C ₁₁ H ₉ NO ₂ S) ₂ (CH ₃ COO) ₂	182	Brown	615.30	Solid (powder)	50.83 (50.75)	3.98	4.59 (4.55)	ı	9.59	2.80

OR Co(II) COMPLEXES
0
රි
×
RSI
ND FIELD PARAMETERS FOR Co(I
¥Μ
PAR
ND FIELD PARA
臣
2
ĝ
SI
80
Ž
Ş
<u>-</u> -
5
₹¥
LD
꾧
E
CS
Z 0
CIR
ELECTRONIC SPECTRAL DATA (cm ⁻¹) AND VARIOUS LIG
TABLE-2

	π/B						1.94						1.9						1.9						1.94
APLEXES	ĸ						3189.90						28322.50						27461.74						24676.73
Co(II) CON	V ₂ /V ₁		I	1	١	2.43	1		١	1	١	2.43	١		1	ı	1	2.15	١		1	I	1	2.15	
ERS FOR	8v %		١	١	40.2	49.9	1		١	ſ	49.8	70.0	١		Í	ſ	47.0	59.6	ſ		ſ	í	43.4	51.5	
PARAMET	Şv.		1	-9901	11829	-3639	١		1	-7558	15043	4883	1		1	4827	13924	-4371	I		١	4330	12479	-3887	
ND FIELD	взя		١	I	1.09	1.17	1.17		١	1	% .	1.02	1.09	2)2	I	ı	0.85	96.0	96.0	7(0	1	Í	0.98	1.07	1.07
IOUS LIGA	10Да	Co(C ₅ H ₅ NO ₂ S) ₂ Cl ₂	1	5614	15360	9248	9253	Co(C ₁₁ H ₉ NO ₂ S) ₂ Cl ₂	1	3247	15847	8127	8130	Co(C ₅ H ₅ NO ₂ S) ₂ (CH ₃ COO) ₂	İ	4053	15563	8430	8424	Co(C ₁₁ H ₉ NO ₂ S) ₂ (CH ₃ COO) ₂	1	4831	15145	8718	8718
AND VAR	B	Co(C ₅ H ₅]	. 1	-653	1961	1138	1139	Co(C ₁₁ H ₉	. 1	-738	828	994	995	(C ₅ H ₅ NO ₂	1	-705	825	933	932	(C ₁₁ H ₉ NO ₂	I	965	951	18	1041
ELECTRONIC SPECTRAL DATA (cm ⁻¹) AND VARIOUS LIGAND FIELD PARAMETERS FOR Co(II) COMPLEXES	$^4T_{1g}(F) \rightarrow ^4T_{2g}(P)$ (v ₃)		23809	13809	Fitted	Fitted	23809		20833	13275	Fitted	Fitted	20833	8	20202	25029	Fitted	Fitted	20202	රි	21978	26308	Fitted	Fitted	21978
CTRONIC SPECT	4 T _{1g} (F) \rightarrow 4 T _{2g} (v ₂)		17241	Fitted	29070	Fitted	17241		15152	Fitted	30195	Fitted	15152		15748	Fitted	29672	Fitted	15748		16260	Fitted	28739	Fitted	16260
TABLE-2: ELE	$^4T_{1g} \rightarrow ^4T_{2g}$ (v_1)		11627	Fitted	Fitted	2886	288		11905	Fitted	Fitted	7022	7022		11695	Fitted	Fitted	7324	7324		11429	Fitted	Fitted	7542	7542
T	Methods of calculation		Exptl.	(a)	((3)	(p)		Exptl.	(a)	@	(3)	Ð		Exptl.	(a)	(<u> </u>	Ð		Exptl.	(a)	e	(3)	(p)

TABLE-3 SPECTRAL DATA AND COMPUTED VALUES OF SPECTRAL PARAMETERS OF Co(II) COMPLEXES

		Complexes							
Parameters		Co(C ₅ H ₅ NO ₂ S) ₂ Cl ₂	Co(C ₁₁ H ₉ NO ₂ S) Cl ₂	² Co(C ₅ H ₅ NO ₂ S) ₂ (CH ₃ COO) ₂	Co(C ₁₁ H ₉ NO ₂ S) ₂ (CH ₃ COO) ₂				
Experimental band transitions (cm ⁻¹)	V ₁	16627 17241	11905 15152	11695 15748	11429 11260				
,	ν3	23809	20833	20202	21978				
Racah parameters	В	1061	858	825	951				
from numerical fitting (cm ⁻¹)	С	4912	3973	3819	4403				
Crystal field parameter from numerical fitting (cm ⁻¹)	10Dq	15360	15847	15563	15145				
Slator-Condon	F ²	1762.5	1425.5	1284.6	1480.8				
shortly parameters (cm ⁻¹)	F ⁴	140.3	113.54	91.92	105.96				
Crystal field parameter	f	1652	1703	1729.2	1682.8				
Nephelauxetic ratio	β(35)	1.09	0.88	0.85	0.98				
Nephelauxetic	V3/V1	2.05	1.75	1.73	1.92				
ratio between v_1 , v_2 and v_3	V3/V2	1.38	1.37	1.28	1.35				
Mean pairing energy	π	3189.90	28322.50	27461.74	24676.73				
Exact spin paring energy	π/B	1.94	1.94	1.94	1.94				

The electronic spectra of the Ni(II) complexes are consistent with octahedral geometry showing bands at ca. 8100–8415, ca. 10790–10920, ca. 14100–14600, ca. 16500–17150 and ca. 25500–26140 assignable to ${}^3B_{1g} \rightarrow {}^3B_{2g}(\upsilon_B)$, ${}^3B_{1g} \rightarrow {}^3B_{1g}(\upsilon_E)$, ${}^3B_{1g} \rightarrow {}^1B_g(sh)$, ${}^3A_{2g} \rightarrow {}^3T_{1g}(F)(\upsilon_2)$ and ${}^3A_{2g}(F) \rightarrow {}^3T_{1g}(P)(\upsilon_3)$ transitions respectively. The various octahedral parameters such as Dt, Dq^E, Dq^z and Dq^{xy} have been calculated and the ratio of NSH (Normalized Spherical Harmonic Hamiltonian Parameters) DT/DQ have been calculated. These data suggest the octahedral geometry around the Ni(II) ion (Tables 4 and 5).

A broad band appeared at ca. 3285–3211 cm⁻¹ in the infrared spectra of both the ligands, which may be assugned to $v(OH)^8$. This band disappears in Co(II) complexes, indicating that the proton of the OH group is replaced by the metal ion upon chelation. The v(C=O) mode is shifted from 1650 cm⁻¹ in hydroxamic acid to 1580–1560 cm⁻¹ in all the complexes, indicating coordination through carbonyl oxygen⁹. The v(C=N) mode¹⁰ is shifted 1355 cm⁻¹ in hydroxamic acid to ca. 1450–1425 cm⁻¹ indicating that coordination of hydroxamic acid occurs through oxygen of carbonyl group. The band due to N=O stretching vibration

in free ligand ca. 970-940 cm⁻¹ gets shifted to higher frequency side ca. $1070-1040 \text{ cm}^{-1}$ on complexation. At ca. 500-430, ca. 300-270 and ca. 1360–1325 cm⁻¹ the bands indicate the formation of $\nu(M-O)$, $\nu(M-Cl)$ and $\nu(M-CH_3COO)^{11, 12}$ bonds respectively (Table-6).

TABLE-4 LIGAND FIELD SPECTRAL DATA (cm⁻¹) OF Ni(II) COMPLEXES

	Electronic Transitions									
Complexes	$3B_{1g} \rightarrow 3B_{2g}(vB)$	3 B _{1g} \rightarrow 3 Eg(vE)	$^{3}B_{1g} \rightarrow ^{1}Eg(sh)$	3 A _{2g} (F) \rightarrow 3 T _{1g} (F) ν ₂	$^{3}A_{2g}(F) \rightarrow ^{3}T_{2g}(P)v_{3}$					
Ni(C ₅ H ₅ NO ₂ S) ₂ Cl ₂	8400	10920	14400	17000	26000					
Ni(C ₁₁ H ₉ NO ₂ S) ₂ Cl ₂	8200	10850	14100	16500	25500					
Ni(C ₅ H ₅ NO ₂ S) ₂ (CH ₃ COO) ₂	8100	10790	14380	16920	25810					
Ni(C ₁₁ H ₉ NO ₂ S) ₂ (CH ₃ COO) ₂	8415	10935	14600	17150	26140					

TABLE-5 ELECTRONIC SPECTRAL PARAMETERS (cm⁻¹) OF Ni(II) COMPLEXES

		Com	plexes	
Parameters	Ni(C ₅ H ₅ NO ₂ S) ₂ Cl ₂	Ni(C ₁₁ H ₉ NO ₂ S) ₂ Cl ₂	Ni(C ₅ H ₅ NO ₂ S) ₂ (CH ₃ COO) ₂	Ni(C ₁₁ H ₉ NO ₂ S) ₂ (CH ₃ COO) ₂
DqXY	1092	1085	1079	1100
$Dq^{\mathbf{Z}}$	588	555	541	552
Dt	288	303	307.5	313
Ds	493	463	487	496.8
-DT	3904	4107	3409	3477.6
DQ	23096	22546	22271.31	32711.24
-DS	3451	3241	4168.29	4242.85
DQ ^L	18477	17687	17339.31	17691.03
DQ^{Z}	32335	32264	32135.30	32751.66
DQ_A	13857	12827	12407.31	12670.82
DQ_E	27715	27405	27203.30	27731.46
-DT/DQ	0.169	0.182	0.18	0.18
dσ	-1280	-1263	-1307.06	-1332.07
$d\pi$	-19	63	38.24	37.29
Δ_1	39	-126	-76.49	-74.59
Δ_2	10079	9967	9893.76	10085.85
Δ_3	3412	3367	3485.49	3552.19
Dq^{E}	1008	997	989.37	1008.5
Dt/Ds	0.584	0.654	0.631	0.630

16 Singh et al. Asian J. Chem.

TAI	BLE-6
KEY INFRARED BANDS (cm ⁻¹)	OF Co(II) AND Ni(II) COMPLEXES

Complexes	Assignments								
Complexes	v(OH)	ν(C=O)	v(C-N)	ν(N-O)	v(M-O)	v(M–Cl)	v(M-CH ₃ COO)		
$\overline{\text{Co}(\text{C}_5\text{H}_5\text{NO}_2\text{S})_2\text{Cl}_2}$		1588s	1425s	1120m	430s	270w			
Co(C ₁₁ H ₉ NO ₂ S) ₂ Cl ₂		1569s	1438s	1037m	510s	280w			
$Co(C_5H_5NO_2S)_2$ ($CH_3COO)_2$		1586s	1425s	1057m	415s		1384s		
$Co(C_{11}H_9NO_2S)_2$ (CH ₃ COO) ₂		1598s	1436m	1124m	425s		1357s		
Ni(C ₅ H ₅ NO ₂ S) ₂ Cl ₂	_	1581b	1428s	1122m	600s	425w			
Ni(C ₁₁ H ₉ NO ₂ S) ₂ Cl ₂		1567s	1439s	1039m	521s	483w			
$Ni(C_5H_5NO_2S)_2$ (CH ₃ COO) ₂		1572b	1425s	1056b	610s		1385s		
Ni(C ₁₁ H ₉ NO ₂ S) ₂ (CH ₃ COO) ₂		1572b	1453s	1049m	525m		1380w		

S = Sharp; b = Broad; m = Medium; w = weak

Thus from the infrared spectra of ligand and complexes, the conclusion may be drawn that the ligand is bidentate in nature and that both Co(II) and Ni(II) complexes are octahedral in nature.

REFERENCES

- 1. H. Lossin, Justus Liebigs Ann. Chem., 150, 314 (1869).
- (a) E.A. Kaezka, C.O. Gitterman, E.L. Dulaney and K. Falkers, Biochemistry, 1, 340 (1962).
 (b) H.C.J. Ottenheijm and J.D.M. Herscheid, Chem. Rev., 86, 697 (1986).
- 3. L. Bauer and Ö. Exner, Angew. Chem., Int. Ed. Engl., 13, 376 (1974).
- 4. A.O. Steward and J.G. Martin, J. Org. Chem., 54, 1221 (1989).
- 5. M.J. Miller, Chem. Rev., 89, 1563 (1989).
- 6. E. Konig and S. Kremer, Theoret. Chim. Acta (Ber.), 23, 12 (1971).
- 7. A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York (1968).
- 8. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, pp. 155, 166, 167, 220 (1970).
- 9. B. Chatterjee, Coord. Chem. Rev., 26, 28 (1978).
- 10. S.K. Brahma and A.K. Chakraborty, J. Indian Chem. Soc., 63 (1986).
- 11. K.K. Ito and H.J. Benstem, Can. J. Chem., 34, 170 (1956).
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, p. 232 (1978).

(Received: 23 January 2003; Accepted: 30 July 2003)

AJC-3137