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Transport Studies of Multi-component
Mixtures of Organic Liquids
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The theory of viscosity for liquid has been developed on the
basis of Flory’s statistical approach. Theoretical expressions ob-
tained are applied to two quaternary and three ternary liquid sys-
tems. A comparative study and its correlation has been made on the
basis of excess thermodynamic functions.
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INTRODUCTION

Viscous flow mechanism in multicomponent systems is of considerable
physico-chemical interest in design calculations involving separation, heat trans-
fer, mass transfer and fluid flow. Considerable amount of work has been done on
binary'™ and ternary® liquid mixtures. However, such studies are rare on
quaternary systems except a few examples’.

The statistical thermodynamic study of transport properties is a direct conse-
quence of molecular structure, specially size and shape of liquids and solutions.
In the present work the statistical mechnical approach of Flory® ? has been applied
to multicomponent systems. It provides useful information in terms of different_
parameters, i.e., lattice, distortion and disorder parameter'®!!, condénsation
effect'?, steric hindrance'*™**, coupling of torsional oscillations'® and nature and
extent of non-ideality'” parameter arising from the shape factor and molecular
interaction.

EXPERIMENTAL

Component liquids were of AnalaR grade. They were purified and dried with
the usual proccduresls.

The systems prepared for the study were as given below:

Two  quaternary  systems: (1) Pentane-hexane-cyclohexane-benzene
(2) Pentane-hexane-benzene-toluene.

Three ternary systems: (1) Pentane-hexane-benzene (2) hexane-cyclchex-
ane-benzene (3) cyclohexane-heptane-toluene.

The viscosity measurements were carried out with a capillary viscometer at
298.15£0.01 K.
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RESULTS AND DISCUSSION

Theory

It is assumed that multi-component system can be considered to be made up
from its contributory binaries. The molecules having f segments are divided into
equal segments so that v ... v{ = v*. Assuming the additivity of core volumes
of the components and adopting the same procedure as empolyed in case of binary
mixtures, it is possible to evaluate the characteristic parameters of a multicompon-
ent system.

Combining the, absolute reaction rate theory'® and the free volume
theory®®%* of liquid viscosity, one obtains®, the expression for the viscosity of
liquid mixtures,

AG* YV
nzACXPl:RT +-v—f} n
where AG # is the free energy of activation per mole, R, the gas constant, V* the
enthalpy volume which must be available for a molecular segment jumping to its
new site, V; the free volume per segment in the mixture, Y is a factor of order
unit and 7 the viscosity of the liquid. Free energy of activation? in the case of,
a multicomponent liquid system can be expressed as,

f
AG=|: T xAG] - 0 AG G{}] ()
i=1
where AGY, is the residual free energy of mixing and o is a constant of order
unity.

The residual free energy of mixing can in term be broken into enthalpy and
entropy contributions:

AGY = AHy - T AS 3)

where AHy, is the enthalpy of mixing per mole and ASY the residual entropy of
mixing per mole.
The residual free energy of mixing may be defined as

AGll\zd = A(}M - AC’comb. (4)

where AGy, is the free energy of mixing and AG .. the combinatorial free energy.
Obviously, AGy becomes identical with GE, if AG_,,, be represented by the ideal
mixing law.

The simplified form of the expression for residual free energy of mixing for
a quaternary system is given as:

f 13 f 1
~ =1 N.v¥0..x::
AG&:[ z NiPi*vi*[i—})wTi ln——-—z' )i 3 5 ——J—l'v'~'x' )
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Molecular interaction study plays a vital role in elucidating the complete
picture of the multicomponent system. Nature and extent of molecular interactions
are generally expressed in terms of excess functions, i.e., y* and derived from the
statistical equations of Flory and Gunberg-Nissan respectively. The value of the
excess viscosity, nE, has been evaluated -using the following relation:

T]E = nexp - n:d (6)
f
where Nig = z Xini
i=1

Gunberg-Nissan equation for a multicomponent system can be expressed as

f
lnn=[2 Xilnni+(zx)l...f€:| )
i=1

where € is the measure of non-ideality parameter and is evaluated by the equation
(7). Exhaustive study of non-ideality parameter and excess viscosity n® reveals
about the fate of interaction which seems to be weakened by the addition of the
third and fourth components in multiomponent system which is supported by the
work of Rastogi®* and others® 26, According to Nigam and Dhillon®®, if € > 0 and
higher in magnitude there will be stong specific interaction in the mixture, and
if € <0 weak interaction is indicated. The extent of interaction is expressed in
terms of aAF, and w,;,. The interaction energy expression for & AF,,, and w,;, in
the case of a multicomponent system can be written as

@ AF, = ~RT(In Nypeo, =~ In Mig) (®)
Weis = BST— In T——y—~ +ERT ©)
TV, X
i=1
where §=02X), s (10)

The values of excess free energy of mixing and interaction energy obtained using
the above relations have been incorporated in Tables 1-5. Negative value of
interaction energy and positive values of excess free energy of mixing indicate
the weakening of interaction in multicomponent systems as evidenced by a careful
perusal of Tables 1-5.

Molecular shape and size, condensation effect, steric hindrance contribution
etc. can be explained in terms of In Ny, In Nyeo, and (A In Mgy, — A In Myye,,)
factors which are listed in Tables 1-5. It was found that with the van der Waals’
model for energy, the difference (A In Mgy, — A In My, ) is relatively small for
mixtures of molecules not having a large size difference. However, for the system
having a large ifference, the difference (A In My, —A In Mye,) should be
relatively large due to increasing function of the size difference. The value of A
In Nypeo. can be adjusted to A In n,,, by adding a term In n Av* given by
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£l
InnA v* =[ T Teyvi2- v,-*"z)zjl; i#j (11)

i=1j=f
where v* is the core volume and cj; is the adjustable parameter. On the basis of
the above fact, it can be concluded that the molecules constituting the system
have moderately small size difference due to low magnitude of the values.

The size effect makes the shape effect too. It is very much possible that the
liquid viscosity is increased when the molecules have a large size difference,
because the probability of a suitable empty site near the molecules diminishes.
This is likely due to good filling of the small molecules in between the space left
by the large ones and it may be the only reason for the increased viscosity and
decreased volume>!. Thus, the structural orientations and shapes of the molecules
are altered completely.

The condensation effect is related to some kind of couplage between the
motions of the condensing and condensated v molecules. If the molecules have
the same shape, it is possible that the maximum of the effect does not happen.

Steric hindrance contribution is associated with the difference between the
experimental and theoretical excess data. Significant steric hindrance contribution
is supposed to occur either when a molecule in the mixture was a crowded central
atom, such as the highly branched alkanes or when it has a special flat shape as
cyclopentane.

A careful perusal of Table 3 and 4 shows that reasonable agreememt has been
achieved between theory and experiment which proves the validity of statistical
mechanical theory of Flory. The average percentage deviation has been found to
be +2.69, £2.93, +1.55, £3.37 and +5.32, respectively. The results obtained from
the Flory’s statistical theory can be improved further by considering three and
four body effects also. In defining the segment and site fractions, a spherical shape
of molecule, i.e., the minimum area of contact has been assumed. The possibility
of only two body interactions has been considered during the extension of the
theory. However, there is every possibility of three and four body interactions
also, and these have been ignored in order to simplify the theroretical procedure.
Although three and four body interactions contribute very little to the energy of
the system, they probably cannot be ignored in spite of the spherical nature of
the molecules. The possibility of the three and four body collisions increases as
the chain length increases, i.e., the area of contact increases. Therefore, in order
to get comparable results, a correction term is needed to include three and four
body effects in the evaluation of characteristic and interaction energy parameters.
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