Asian Journal of Chemistry

A Quantum Chemical Study on Structure of 1,2-*Bis*(diphenylphosphinoyl)ethane and 4-chlorophenol cocrystal

CENGIZ YENIKAYA*, MEHMET POYRAZ† and SABRI ÇEVIK† Department of Chemistry, Faculty of Arts and Sciences Dumlupinar University, Kütahya, Turkey Fax: (90)(274)2652066; Tel: (90)(274)2652051; E-mail: yenikaya@dumlupinar.edu.tr

The cocrystal of 1,2-*bis*(diphenylphosphinoyl)ethane (DPPEO) with 4-chlorophenol (1:2) were studied theoretically with MINDO/ 3, MNDO, PM3 and AM1 semi empirical methods to elucidate its structure. The bond lengths and angles from theoretical studies of molecule DPPEO/4-chlorophenol (1:2) were found to be as expected. Theoretical results, concerning with intermolecular van der Waals forces in cocrystal, were compared with the previously obtained experimental data and AM1 results were found to be the best fit for selected C-C, C-P and P-O bond lengths and angles of DPPEO/4-chlorophenol. For the hydrogen bond geometry none of the theoretical methods were found to be comparable with experimental data.

Key Words: Cocrystal, Quantum chemical studies, Hydrogen bonding, Semi-empirical methods, Vander Waals forces.

INTRODUCTION

Phosphine oxides are an excellent hydrogen bond acceptor and can form large, high quality crystals when cocrystallized with a variety of hydrogen bond donors. They can be used to promote the crystallization for compounds that do not crystallize well on their own¹. There are a few examples of hydrogen bonded complexes for triphenylphosphine oxide (TPPO) and alcohols (diphenylmethanol)² or phenols³⁻⁵. Hydrogen bond geometry is similar in all of the TPPO cocrystals with phenols consisting of a single linear bond except in TPPO/phenol (2:3) complex having two different almost linear bonds⁶.

The traditional X-ray diffraction techniques and the theoretical studies allow the determination of the positions of the atoms in the compounds under study for suitable systems^{7,8}. We have previously reported theoretical studies on geometries of hydroquinone complexes with phosphine oxides, (+)-(R)-2,2-*bis*(diphenylphosphinoyl)-1,1'-binaphthyl⁹, TPPO¹⁰, 1,2-*bis*(diphenylphosphinoyl)ethane (DPPEO)¹¹ and phenol complex with DPPEO¹². The phosphine oxide in the present study, DPPEO, produced

[†]Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey.

Vol. 20, No. 1 (2008)

1:2 complex with 4-chlorophenol. The continuous increase in the development of the computer technology and tremendous development in sophistication of software to apply in structure-reactivity relations^{13,14}, reaction mechanism¹⁵⁻¹⁷, corrosion¹⁸⁻²⁰ and in some biological processes^{21,22}. Thus, it is worthwhile to study the structure of the title compound to find the parallelism of the computed results with the experimental ones. In this respect, for bond lengths and angles as well as hydrogen bonding in the cocrystal of DPPEO and 4-chlorophenol, it is considered appropriate to compare the quantum chemical results in the gas phase to the results of X-ray structural studies²³.

EXPERIMENTAL

Theoretical calculation were carried out at the Restricted Hartree-Fock level using MINDO/3, MNDO, PM3 and AM1 semi empirical SCF-MO methods in the MOPAC 7.0 program²⁴, implemented on an Intel Pentium Pro. 400 MHz computer. Initial estimates for the geometries of all were obtained by a molecular mechanics program (CS Chemoffice Pro for Windows)²⁵, followed by full optimization of all geometrical variables (bond lengths, bond angles and dihedral angles), without any symmetry constraint, using the semi empirical MINDO/3, MNDO, PM3, AM1 quantum chemical methods in the MOPAC 7.0 program. The molecular plots for the cocrystal of DPPEO/HQ and the van der Waals contacts in cocrystal were produced by MERCURY program from Cambridge Crystallographic Data Centre (CCDC)^{26.27}.

RESULTS AND DISCUSSION

Cocrystals of DPPEO/4-chlorophenol, suitable for single crystal X-ray diffraction, were grown as colourless plates from benzene. The compound crystallizes in the centrosymmetric monoclinic space group $P2_1/c$, with two formula units per unit cell. There is a single crystallographically distinct residue in the asymmetric unit with the two halves of the DPPEO being symmetry related. The asymmetric unit contains half of the DPPEO molecule and one 4-chlorophenol molecule. The molecular structure of the 1:2 cocrystal of DPPEO/4-chlorophenol is shown in Fig. 1.

The geometries of the DPPEO molecule and 4-chlorophenol molecules are almost identical with those in DPPEO/phenol $(1:2)^{28}$. There are two identical, symmetry related, almost linear, hydrogen bonds from each 4-chlorophenol molecule to the oxygen of a P=O bond.

All these experimental results were confirmed in the present study (Tables 1 and 5). The molecule (DPPEO/4-chlorophenol) in gas phase was studied with MINDO/3, MNDO, PM3 and AM1 semi empirical methods

Fig. 1. Structure of DPPEO/4-clorophenol

TABLE-1

MODELS OF COCRYSTAL OF DPPEO/4-CHLOROPHENOL (1:2) WITH VANDER WAALS INTERACTIONS UP TO 3 Å [Ref. 23]

M1		M2		M3	
H2A01	1.826	H2A01	1.826	H2A O1	1.826
0201	2.643	0201	2.643	O2 O1	2.643
		H16…O1	2.812	H16…O1	2.812
		H18…H12	2.819	H18…H12	2.819
				O2…H6	2.573
				Н2А…Н13А	2.443
M4			M5		
H2A01	1.8	326	H2A01	1.826	
0201	2.6	543	0201	2.643	
H16…01	2.8	312	H16…O1	2.812	
H18…H12	2.8	319	H18…H12	2.819	
O2… H6	2.5	573	O2… H6	2.573	
H2A…H13A	A 2.4	143	H2A…H13	A 2.443	
02…H13A	2.5	577	02…H13A	2.577	
Н2А…Н6	2.9	909	Н2А…Н6	2.909	
			H2A…P1	2.991	

Vol. 20, No. 1 (2008)

Structure of DPPEO with 4-chlorophenol cocrystal 455

at 20 °C at which the experimental values were obtained²³. Tables 2 and 3 listed the gas phase computation results of MINDO/3, MNDO, PM3 and AM1 semi empirical methods for selected C-C, C-P and P-O bond lengths and angles, respectively. There are two different results for each theoretical study in gas phase for the two halves of the molecule although they are symmetric in solid state. In order to find the effects of vander Waals interactions on symmetry, contacts in cocrystal up to 3 Å in addition to hydrogen bonding interaction were used to obtain models. They were abbreviated as M1, M2, M3, M4 and M5 and computed with semi empirical methods (Table 1 and Fig. 2). Deviations from symmetry between the same methods were obtained from the differences between corresponding bond lengths or angles of the two halves of the models and shown in the Tables 2 and 3. Deviations from symmetry for selected bond lengths and angles were presented in Figs. 3 and 4, respectively for each model. Results were indicated that AM1 gives better results accord for symmetry.

Fig. 2. vander Waals interactions of DPPEO/4-chlorophenol

Table-4 listed the mean values of the same theoretical results and previously obtained experimental results²³. Theoretical results for each bond lengths and angles were recalculated by taking arithmetic average of the corresponding bond lengths or angles of two halves of the models to compare with experimental ones. Percentage values of the differences were also plotted against models for bond lengths (Fig. 5) and angles (Fig. 6). Among the applied methods, AM1 seems to give better results for both bond lengths and angles of DPPEO/4-chlorophenol.

TABLE-2 2 DEVIATIONS FROM SYMMETRY FOR SELECTED BOND LENGTHS OF TWO HALVES OF THE COCRYSTAL OF 4-CHLOROPHENOL WITH DPPEO	$M1^a$ $M1^b$ $M2^a$ $M2^b$ $M3^a$ $M3^b$ $M4^a$ $M4^b$ $M5^a$ $M5^b$ $Exp.[23]$	1.594 1.470 1.480 1.836 1.480 1.837 1.480 1.835 1.478 4.873 1.486(3)	1.599 1.678 1.620 1.670 1.670 1.671 1.620 1.670 1.624 1.707 1.793(3)	1.603 1.757 1.622 1.623 1.622 1.622 1.621 1.623 1.623 1.642 1.787(4)	1.645 1.726 1.658 1.650 1.658 1.650 1.658 1.649 1.654 1.676 1.800(3)	2.095 0.986 0.978 2.206 0.978 2.200 0.978 2.196 0.978 5.100 0.820	45.202 ^c 52.678 ^c 51.988 ^c 52.443 ^c 163.240 ^c	1.487 1.741 1.489 1.839 1.489 1.839 1.489 1.489 1.840 1.616 9.741 1.486(3)	1.814 1.749 1.818 1.949 1.817 1.949 1.810 1.949 1.753 1.970 1.793(3)	1.828 1.596 1.821 1.822 1.827 1.822 1.827 1.779 1.798 1.787(4)	1.863 1.832 1.859 1.863 1.859 1.863 1.859 1.862 1.813 1.875 1.800(3)	0.957 0.972 0.964 0.964 0.964 2.530 0.964 2.540 1.645 8.557 0.820	$14.871^{\rm C}$ $16.018^{\rm C}$ $54.214^{\rm C}$ $54.382^{\rm C}$ $325.294^{\rm C}$	6.432 1.683 1.519 4.386 1.519 4.349 1.520 4.510 4.978 5.417 1.486(3)	1.736 1.772 1.771 1.740 1.771 1.738 1.735 1.793(3)	1.736 1.699 1.768 5.648 1.769 5.662 1.770 5.773 1.741 6.612 1.787(4)	1.782 1.821 1.788 1.782 1.789 1.826 1.789 1.784 1.788 1.800(3)	5.857 0.967 0.951 0.963 0.949 0.961 0.949 0.961 1.832 0.963 0.820	198.629° 90.808° 90.380° 93.814° 184.175°	3 1.647 2.666 1.535 11.266 1.644 2.742 1.646 2.460 1.661 2.794 1.486(3)	1.851 1.827 1.876 1.830 1.857 1.835 1.855 1.846 1.861 1.844 1.793(3)	1.859 1.879 1.878 10.713 1.858 3.951 1.861 3.689 1.859 4.047 1.787(4)	1.883 1.827 1.893 1.844 1.876 1.852 1.883 1.852 1.885 1.800(3)	0.977 0.965 0.949 0.963 0.957 0.971 0.975 0.976 0.971 0.965 0.820	29.498^{C} 242.701^{C} 53.674^{C} 47.746^{C} 56.184^{C}	ocrystal, ^b data for second half of the cocrystal, ^c mean values for the percentage difference between two halves of the
TAI FROM SYMMETRY FOR COCRYSTAL OF 4-CHLC	$M1^{b}$ $M2^{a}$ $M2^{b}$	1.470 1.480 1.836	1.678 1.620 1.670	1.757 1.622 1.623	1.726 1.658 1.650	0.986 0.978 2.206	52.678	1.741 1.489 1.839	1.749 1.818 1.949	1.596 1.821 1.827	1.832 1.859 1.863	.972 0.964 0.964	16.018 ^C	1.683 1.519 4.386	1.762 1.772 1.739	1.699 1.768 5.648	1.821 1.823 1.788	0.967 0.951 0.963	90.808 ^c	2.666 1.535 11.266	1.827 1.876 1.830	1.879 1.878 10.713	1.827 1.893 1.844	0.965 0.949 0.963	242.701 ^C	or second half of the cocrys
CENTAGE DEVIATIONS) M1 ^a	AM1 1.594 1	1.599 1	1.603 1	1.645 1	2.095 _ 0	45.202 ^c	PM3 1.487 1	1.814 1	1.828 1	1.863 1	0.957 0	14.871 ^C	MNDO 6.432 1	1.736 1	1.736 1	1.782 1	5.857 0	198.629 ^C	MINDO/3 1.647 2	1.851 1	1.859 1	1.883 1	0.977 0	29.498 ^c	alf of the cocrystal, ^b data fo
PER	Bond lengths (Å	P1-01	P1-C7	P1-C1	P1-C13	O2-H2A		P1-01	P1-C7	P1-C1	P1-C13	02-H2A		P1-01	P1-C7	P1-C1	P1-C13	02-H2A		P1-01	P1-C7	P1-C1	P1-C13	02-H2A		^a data for first h

456 Yenikaya et al.

Asian J. Chem.

		CNICITUTA		4-CHI	OROPHEN	NOL WITH	DPPEO					
Bond lengths (Å)		M1 ^a	M1 ^b	M2 ^a	$M2^{b}$	M3 ^a	$M3^{b}$	$M4^{a}$	$M4^{b}$	$M5^{a}$	M5 ^b	Exp. [23]
01-P1-C1	AMI	113.1	36.3	112.2	85.6	112.2	86.0	112.4	85.7	112.5	67.3	112.1(2)
01-P1-C13		102.5	140.8	111.1	89.7	110.7	89.4	110.7	89.5	112.4	146.6	112.1(2)
01-P1-C7		115.6	104.2	111.9	167.0	112.0	166.8	112.0	167.0	111.8	115.2	111.8(2)
C1-P1-C7		110.3	107.2	107.8	96.3	107.7	96.6	107.7	96.1	106.6	91.3	107.6(2)
C1-P1-C13		106.2	110.1	105.2	115.6	105.1	115.6	105.1	115.6	104.0	116.1	107.7(2)
C7-P1-C13		108.3	106.9	108.3	101.0	108.8	101.0	108.7	101.3	109.0	98.2	105.2(2)
		20.656		20.225 ~		20.287~		20.391°		18.664 ~		
01-P1-C1	PM3	113.4	112.5	112.7	82.0	112.7	81.9	112.7	81.7	104.7	48.3	112.1(2)
01-P1-C13		112.8	107.4	113.5	92.1	113.8	92.3	113.5	92.3	112.3	155.5	112.1(2)
01-P1-C7		112.8	98.4	113.9	171.2	113.8	170.8	114.0	170.8	113.9	107.0	111.8(2)
C1-P1-C7		105.3	114.3	104.4	90.0	104.6	89.8	104.6	89.9	109.4	92.1	107.6(2)
C1-P1-C13		104.8	113.1	105.6	118.0	105.4	118.0	105.3	118.1	107.1	116.5	107.7(2)
C7-P1-C13		107.0	110.1	105.8	94.9	105.7	95.1	105.9	95.1	109.2	91.4	105.2(2)
		6.942 ^C		23.782 ^C		23.720^{C}		23.783 ^C		25.051 ^c		
01-P1-C1	OUND	95.8	109.8	113.0	6.6	112.8	6.4	112.8	6.5	131.3	6.8	112.1(2)
01-P1-C13		111.0	106.4	110.8	150.1	110.9	148.3	111.0	147.8	98.4	144.3	112.1(2)
01-P1-C7		125.7	103.4	109.7	101.6	109.5	103.8	109.5	103.9	105.6	107.3	111.8(2)
C1-P1-C7		106.3	111.9	107.1	102.6	107.2	104.2	106.9	104.4	105.8	113.4	107.6(2)
C1-P1-C13		107.2	116.2	104.1	148.5	103.9	147.6	103.8	146.8	103.2	138.9	107.7(2)
C7-P1-C13		108.7	108.3	112.1	108.3	112.5	107.9	112.8	108.3	111.9	107.5	105.2(2)
		10.407 ^C		32.803 ^C		31.851 ^C		31.750 ^C		35.057 ^C		
01-P1-C1	MINDO/3	107.4	29.9	111.0	6.4	107.2	10.7	105.3	11.5	105.2	8.2	112.1(2)
01-P1-C13		99.8	117.5	113.0	67.2	103.0	122.1	110.4	129.6	105.3	130.2	112.1(2)
01-P1-C7		108.9	111.1	109.2	84.4	107.9	100.0	107.5	100.6	107.6	96.9	111.8(2)
C1-P1-C7		114.7	124.7	107.3	89.5	116.1	100.3	115.4	9.66	117.0	100.7	107.6(2)
C1-P1-C13		108.9	119.4	104.9	68.1	108.7	130.5	107.4	139.3	108.5	134.0	107.7(2)
C7-P1-C13		115.8	114.5	111.2	113.7	113.0	111.0	110.7	107.3	112.4	108.5	105.2(2)
		24.986 ^C		38.869 ^C		29.270 ^C		29.721 ^C		31.405 ^C		
^a data for first half o	f the cocrys	stal, ^b data f	or second h	alf of the c	ocrystal, ^c 1	mean values	for the per	ccentage dif	ference bet	ween two h	alves of the	cocrystal
[(EXP-M]) + (EXP-1	dx⊐)]/[(_txb)	1×100										

Vol. 20, No. 1 (2008) Structure of DPPEO with 4-chlorophenol cocrystal 457

MEAN VA C	LUES OF SI HEMICAL (ELECTED B CALCULAT	OND LENG	THS AND A	TAB NGLES OB1 Y OBTAINE	LE-4 FAINED FRO D EXPERIM	DM PERCEN IENTAL DA	TAGE DIFFE TA FOR DPP	ERENCES B EO/4-CHLC	ETWEEN QI JROPHENOI	JANTUM
Lengths(Å)	Exp. [23]	M1 ^a AM1	M2 ^a	M3 ^a	$M4^{a}$	M5 ^a	M1 ^a PM3	$M2^{a}$	$M3^{a}$	$M4^{a}$	M5 ^a
P1-01	1.486(3)	1.532	1.658	1.659	1.658	3.176	1.614	1.664	1.664	1.665	5.679
P1-C7	1.793(3)	1.639	1.645	1.671	1.645	1.666	1.782	1.884	1.883	1.880	1.862
P1-C1	1.787(4)	1.680	1.623	1.622	1.622	1.633	1.712	1.824	1.825	1.825	1.789
P1-C13	1.800(3)	1.686	1.654	1.654	1.654	1.665	1.848	1.861	1.861	1.861	1.844
02-H2A	0.820	1.541	1.592	1.589	1.587	3.039	0.965	0.964	1.747	1.752	5.101
Angles(°)		22.385^{b}	26.258^{b}	25.913^{b}	26.141^{b}	81.512 ^b	6.743^{b}	8.009^{b}	27.107^{b}	27.191^{b}	162.111^{b}
01-P1-C1	112.1(2)	74.700	98.900	99.100	99.050	006.68	112.950	97.350	97.300	97.200	76.500
01-P1-C13	112.1(2)	121.650	100.400	100.050	100.100	129.500	110.100	102.800	103.050	102.900	133.900
01-P1-C7	111.8(2)	109.900	139.450	139.400	139.500	113.500	105.600	142.550	142.300	142.400	110.450
C1-P1-C7	107.6(2)	108.750	102.050	102.150	101.900	98.950	109.800	97.200	97.200	97.250	100.750
C1-P1-C13	107.7(2)	108.150	110.400	110.350	110.350	110.050	108.950	111.800	111.700	111.700	111.800
C7-P1-C13	105.2(2)	107.600	104.650	104.900	105.000	103.600	108.550	100.350	100.400	100.500	100.300
	,	7.892 ^c	9.189^{c}	9.141 ^c	9.178 ^c	8.098^{C}	2.413 ^C	11.174 ^c	11.083^{C}	11.112 ^C	11.207^{C}
Lengths(Å)		MNDO					MINDO/3				
P1-01	1.486(3)	4.058	2.953	2.934	3.015	5.198	2.157	6.401	2.193	2.053	2.228
P1-C7	1.793(3)	1.749	1.756	1.756	1.755	1.736	1.839	1.853	1.846	1.851	1.853
P1-C1	1.787(4)	1.718	3.708	3.716	3.772	4.177	1.869	6.296	2.905	2.775	2.953
P1-C13	1.800(3)	1.802	1.806	1.808	1.808	1.786	1.855	1.869	1.864	1.868	1.871
02-H2A	0.820	3.412	0.957	0.955	0.955	1.398	0.971	0.956	0.964	0.976	0.968
Angles(°)		99.115 ^b	45.058^{b}	44.867^{b}	46.595^{b}	91.573^{b}	14.749^{b}	121.350^{b}	26.837^{b}	23.873^{b}	28.092^{b}
01-P1-C1	112.1(2)	102.800	59.800	59.600	59.650	69.050	68.650	58.700	58.950	58.400	56.700
01-P1-C13	112.1(2)	108.700	130.450	129.600	129.400	121.350	108.650	90.100	112.550	120.000	117.750
01-P1-C7	111.8(2)	114.550	105.650	106.650	106.700	106.450	110.000	96.800	103.950	104.050	102.250
C1-P1-C7	107.6(2)	109.100	104.850	105.700	105.650	109.600	119.700	98.400	108.200	107.500	108.850
C1-P1-C13	107.7(2)	111.700	126.300	125.750	125.300	121.050	114.150	86.500	119.600	123.350	121.250
C7-P1-C13	105.2(2)	108.500	110.200	110.200	110.550	109.700	115.150	112.450	112.000	109.000	110.450
		3.672 ^C	15.517 ^C	15.055 ^C	15.004^{C}	11.662 ^C	11.690 ^C	19.301 ^C	12.151 ^C	13.353 ^C	13.623 ^C
^a mean value	s for two hal	ves of the me	olecule, ^b mea	in values for	the percentag	ge difference	of theoretical	and experime	ental results o	of bond lengt	h
[(M ^a -M ^b)/Ex	р×100], ° п	nean values fo	or the percent	age differenc	te of theoretic	cal and exper	imental resul	ts of angles [(M ^a -M ^b)/Exp	× 100]	

458 Yenikaya et al.

Asian J. Chem.

----Symmetric molecule — AM1 ····A····PM3 -·*·-MNDO -·+-· MINDO/3 Fig. 5. Differences from experimental results for the selected bond lengths

Fig. 6. Differences from experimental results for the selected angles

For hydrogen bond geometry, none of the theoretical methods for all models are fit for experimental hydrogen bond geometry (Table-5). This might be due to the difference between gas phase where the cocrystal being as isolated molecule and solid state connected to the neighbour molecules. In present study, only the vander Waals contacts in cocrystal up to 3 Å could be established. For theoretical methods used in this study, the limit of allowed number of atoms is 100, inter-molecular contacts between the neighbour cocrystals could not established. This probably caused significant elongation of hydrogen bond length (H2A…O1) and related bond lengths of O2…O1 and O2-H2A as well as hydrogen bond angle (O2-H2A…O1) in all calculations.

		TAB	SLE-5			
MEAN VALU	JES FOR TV	VO HA	LVES OF 7	ГНЕ МОІ	LECULE I	FOR
	HYD	ROGE	N BONDIN	IG		
	Evn [22]	M1	M2	M3	M4	М

	Exp.[23]	M1	M2	M3	M4	M5
AM1						
H2A…O1 (Å)	1.826	1.775	2.044	2.040	2.046	3.295
02…01 (Å)	2.643	1.285	2.139	2.137	2.139	2.055
02-H2A…01 (°)	173	35.600	101.150	101.600	101.400	90.550
PM3						
H2A…O1 (Å)	1.826	1.811	2.012	2.013	2.012	5.235
02…01 (Å)	2.643	2.087	2.129	2.127	2.126	1.885
02-H2A…01 (°)	173	105.300	106.100	106.050	105.350	82.289
MNDO						
H2A…O1 (Å)	1.826	3.695	2.490	2.425	2.488	1.398
O2…O1 (Å)	2.643	1.204	2.656	2.587	2.653	1.300
02-H2A…O1 (°)	173	25.750	96.750	96.400	96.750	42.700
MINDO/3						
H2A…O1 (Å)	1.826	1.884	4.484	1.873	1.897	1.889
02…01 (Å)	2.643	1.395	4.125	1.399	1.412	1.395
02-H2A…O1 (°)	173	45.900	59.150	58.700	46.300	45.550

Vol. 20, No. 1 (2008)

Conclusion

All available hydrogen bond donors and acceptors are involved forming hydrogen bonds in the cocrystal. This is according with the Etter rules that in the solid state all available acidic hydrogen atoms participate in hydrogen bonds²⁹. The crystal structure of the cocrystal DPPEO/4chlorophenol has been thoroughly examined previously and it revealed that out there are no apparent holes in the packing diagram due to dense packing behaviour in the lattice²³. With and without vander Waals interactions in cocrystal for computing, AM1 gave comparable results between experimental and theoretical studies for the selected bond lengths and angles. In previous study, AM1 was also seemed to be the best fit for the C-C, C-P and P-O bond lengths and angles as well as for hydrogen bond geometry for the cocrystal of DPPEO/HQ¹¹. The effects of vander Waals interactions on geometries of molecules will need to be checked out in future studies.

ACKNOWLEDGEMENT

The authors like to express sincere thanks and gratitude to Prof. Dr. Cemil Ögretir for his support in this study.

REFERENCES

- 1. M.C. Etter and P.W. Baures, J. Am. Chem. Soc., 110, 689 (1988).
- 2. C. Lariucci, R.H. De A. Santos and J.R. Lechat, Acta. Cryst., C42, 1824 (1986).
- 3. R.M. Fuquen and J.R. Lechat, Acta. Cryst., C48, 1690 (1992).
- 4. T. Gramstad, S. Husebye and K. Maartmann-Moe, Acta Chem. Scand., B40, 26 (1986).
- 5. R.M. Harrison, P.A. Chaloner and P.B. Hitchcock, *Acta. Cryst.*, C49, 1072 (1993).
- 6. D.C. Apperley, P.A. Chaloner, L.A. Crowe, R.K. Harris, R.M. Harrison, P.B. Hitchcock and C.M. Lagier, *Phys. Chem. Chem. Phys.*, **2**, 3511 (2000).
- 7. Z. Dega-Szafran, G. Dutkiewicz, Z. Kosturkiewicz and M. Szafran, J. Mol. Struct., 641, 251 (2002).
- 8. Z. Dega-Szafran, E. Tykarska, E. Dulewicz and M. Szafran, J. Mol. Struct., 605, 319 (2002).
- 9. C. Yenikaya, C. Ögretir and H. Berber, J. Mol. Struct. (Theochem.), 713, 171 (2005).
- 10. C. Yenikaya and C. Ögretir, J. Mol. Struct. (Theochem), 731, 1 (2005).
- 11. C. Yenikaya, C. Ögretir and H. Berber, J. Mol. Struct. (Theochem.), 725, 207 (2005).
- 12. C. Yenikaya, C. Ögretir and H. Berber, J. Mol. Struct. (Theochem.), 686, 153 (2004).
- 13. C. Ögretir and N.F. (Kaypak) Tay, J. Mol. Struct. (Theochem.), 588, 145 (2002).
- 14. N. Tokay, and C. Ögretir, J. Mol. Struct. (Theochem.), 594, 185 (2002).
- 15. N. Tokay, and C. Ögretir, J. Mol. Struct. (Theochem.), 629, 51 (2003).
- 16. N. Tokay and C. Ögretir, J. Mol. Struct. (Theochem.), 626, 113 (2003).
- C. Ögretir, S. Çalis, G. Bereket and H. Berber, J. Mol. Struct. (Theochem.), 626, 179 (2003).
- 18. G. Bereket, C. Ögretir and Ç. Özsahin, J. Mol. Struct. (Theochem.), 663, 39 (2003).
- 19. C. Ögretir, S. Çalis and G. Bereket, J. Mol. Struct. (Theochem.), 635, 229 (2003).
- 20. G. Bereket, C. Ögretir, M. Yaman and E. Hür, *J. Mol. Struct. (Theochem.)*, **625**, 31 (2003).

462 Yenikaya et al.

- 21. S. Yarligan, A.K. Füzery, C. Ögretir and I.G. Csizmadia, J. Mol. Struct. (Theochem.), 666-667, 269 (2003).
- C. Ögretir, S. Yarligan, S. Demirayak and T. Arslan, J. Mol. Struct. (Theochem.), 666-667, 609 (2003).
- 23. P.A. Chaloner, C. Yenikaya, P.B. Hitchcock, Private Communication to the Cambridge Structural Database, Deposition number CCDC-231230. CCDC, 12 Union Road, Cambridge, UK (2004).
- 24. J.J.P. Stewart, MOPAC 7.0 QCPE, University of Indiana, Bloomington IN, USA.
- CS Chemoffice Pro for Microsoft Windows, Cambridge Scientific Computing Inc., 875 Massachusetts Avenue, Suite 61, Cambridge MA 2139, USA.
- I.J. Bruno, J.C. Cole, P.R. Edgington, M.K. Kessler, C.F. Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Crystallogr.*, B58, 389 (2002).
- 27. R. Taylor and C.F. Macrae, Acta Crystallogr., B57, 815 (2001).
- P.A. Chaloner, C. Yenikaya, P.B. Hitchcock, Private Communication to the Cambridge Structural Database, deposition number CCDC-231228. CCDC, 12 Union Road, Cambridge, UK (2004).
- 29. M.C. Etter, J. Phys. Chem., 95, 4601 (1991).

(Received: 15 November 2006; Accepted: 14 September 2007) AJC-5845