Asian Journal of Chemistry

Synthesis and Characterization of Some Hexaphenyldilead Complexes with Bifunctional Tridentate Schiff Bases

POOJA JAIN, BHAWANA JAIN, SANDHYA SINGH, VISHAL PATHAK and PRABHAT PATHAK* Department of Chemistry, Narain Postgraduate College, Shikohabad-205 135, India E-mail: prabhatpathak.2007@rediffmail.com

The reactions of hexaphenyldilead with bifunctional tridentate Schiff bases in 1:2 molar ratios have been studied in anhydrous benzene. All the reactions were found to be quite facile and lead-lead bond was cleaved in preference to the lead-carbon bond. The resulting derivatives were yellow solids. They are quite stable in air and are not easily attacked by moisture. They are soluble in DMF and DMSO only. The lead atom, in these complexes, has a coordination number of six.

Key Words: Synthesis, Hexaphenyldilead, Complexes, Tridentate Schiff bases.

INTRODUCTION

Continuing with our endeavour¹ of cleaving lead-lead bond in hexaphenyldilead (IV) with monofunctional bidentate Schiff bases, we extend the present investigation with bifunctional tridentate Schiff bases as potential ligands. The lead-lead bond cleaves within 8-10 h. The reaction of hexaphenyldilead (IV) with bifunctional tridentate Schiff bases in 1:2 molar ratios can be represented by the following general equation:

 $(C_6H_5)_3Pb - Pb(C_6H_5)_3 + 2SBH_2 \longrightarrow 2(C_6H_5)_3Pb \cdot SBH$ (where $SBH_2 =$ Bifunctional tridentate Schiff bases).

EXPERIMENTAL

Hexaphenyldilead decomposes thermally and also in light. It was therefore, protected from heat and sunlight. Chloroform (BDH) was stored over anhydrous calcium oxide. Diethyl ether (Alembic) was stored over sodium wire for 2 h, refluxed and then distilled at 35 °C. All glass apparatus fitted with quick-fit interchangeable standard ground joints were washed and dried in oven at 120-130 °C.

Preparation of bifunctional tridentate Schiff bases: The following Schiff bases were prepared by the condensation of salicylaldehyde, *o*-hydroxyacetophenone, 2,4-pentanedione and 2-hydroxy-1-naphthaldehyde with alcoholic amines in equimolecular ratio in benzene medium.

Vol. 20, No. 1 (2008)

The contents were refluxed for 5-6 h on a fractionating column and after removing the solvent, they were purified by distillation under reduced pressure.

The resulting Schiff bases are: N-(2-hydroxyethyl)salicylaldimine; N-(2-hydroxy-1-propyl)salicylaldimine; N-(3-hydroxy-1-propyl) salicylaldimine; N-(2-hydroxyethyl) *o*-hydroxyacetophenoneimine; N-(2hydroxy-1-propyl) *o*-hydroxyacetophenoneimine; N-(3-hydroxy-1-propyl) *o*-hydroxyacetophenoneimine; 4-(2-hydroxyethyl)amino-3-pentene-2-one; 4-(2-hydroxy-1-propyl)amino-3-pentene-2-one; 4-(3-hydroxy-1-propyl) amino-3-pentane-2-one; N-(2-hydroxyethyl)-2-hydroxy-1-naphthaldimine.

Schiff bases belonging to this group possess two functional (–OH) groups and one OH besides the characteristics azomethine (–C=N–) group and thus have three possible sites of coordination. These Schiff bases have ONO donor system and their corresponding anions as –SBH₂ or –SB–, obtained by the liberation of one or two protons, respectively. The physical characteristics and analysis of these Schiff bases have been recorded in Table-1.

Reactions of hexaphenyldilead with Schiff bases: Hexaphenyldilead (0.87 g) was dissolved in benzene (30 mL) and bifunctional tridentate Schiff bases (0.33-0.40 g as required) was added. The reaction mixture was refluxed for about 8 h. Excess of benzene was pumped out under reduced pressure. On adding petroleum ether at (60-80 °C) and keeping it in ice, yellow crystals were obtained.

RESULTS AND DISCUSSION

The resulting complexes are yellow solids. They are soluble in DMF and DMSO and have limited solubility in common organic solvents. The physical properties of these complexes have been presented in Table-2. In these complexes, lead atom attains a coordination of six.

Infrared spectra of Schiff bases and corresponding organolead (IV) complexes have been scanned and important tentative assignments have been made on the basis of the data available in the standard literature². These assignments have been recorded in Table-3. A strong band in the

1.301, 11-10	Ċ	b.p. /	Elemental an	alysis: Found (Calcd.) (%)
SCHIIT DASES	Colour	(m.p.)	C	Н	z
N-(2-hydroxyethyl) salicylaldimine	Yellow viscous	120	65.30	6.50	8.45
HO-C ₆ H ₄ CH:N-CH ₂ CH ₂ OH (C ₉ H ₁₁ NO ₂)	liquid	001	(65.45)	(99.9)	(8.48)
N-(2-hydroxy-1-propyl) salicylaldimine	Yellow liquid		67.00	7.29	7.65
HO-C ₆ H ₄ CH:N·CH ₂ ·CHOH·CH ₃ (C ₁₀ H ₁₃ NO ₂)		171	(67.04)	(7.26)	(7.82)
N-(3-hydroxy-1-propyl) salicylaldimine	Yellow liquid	157	67.10	7.41	7.61
HO· C_6H_4 ·CH:N·CH ₂ CH ₂ CH ₂ ·OH ($C_{10}H_{13}NO_2$)		701	(67.04)	(7.26)	(7.82)
N-(2-hydroxyethyl) o-hydroxy acetophenoneimine	Dark yellow	(06)	67.81	7.32	7.98
HO·C ₆ H ₄ ·C·CH ₃ :N·CH ₂ ·CH ₂ ·OH (C ₁₀ H ₁₃ NO ₂)	solid	((6)	(67.04)	(7.26)	(7.82)
N-(2-hydroxy-1-propyl) o-hydroxy acetophenoneimine	Yellow solid	(10)	68.39	7.81	7.27
HO·C ₆ H ₄ ·C·CH ₃ :N·CH ₂ ·CHOH·CH ₃ (C ₁₁ H ₁₅ NO ₂)		(16)	(68.39)	(7.77)	(7.25)
N-(3-hydroxy-1-propyl) o-hydroxy acetophenoneimine	Yellow solid		68.37	7.86	7.25
$HO \cdot C_6H_4 \cdot C \cdot CH_3 \cdot N \cdot CH_2 \cdot CH_2 CH_2 OH(C_{11}H_{15}NO_2)$		(11)	(68.39)	(1.77)	(7.25)
4-(2-hydroxyethyl)amino-3-pentene-2-one	Dark yellow	(13)	58.85	9.18	9.70
CH ₃ ·CO·CH·C·CH ₃ NH·CH ₂ ·CH ₂ ·OH(C ₇ H ₁₃ NO ₂)	needles	(c_{ℓ})	(58.74)	(60.6)	(6.79)
4-(2-hydroxy-1-propyl)amino-3-pentene-2-one	Pale yellow	(00)	61.30	9.65	8.86
CH ₃ CO·CHCCH ₃ :NHCH ₂ :CH·OH·CH ₃ (C ₈ H ₁₅ NO ₂)		(70)	(61.14)	(9.55)	(8.92)
4-(3-hydroxy-1-propyl)amino-3-pentene-2-one	Yellow liquid	717	61.00	9.67	9.11
CH ₃ CO·CHC·CH ₃ :NH·CH ₂ ·CH ₂ ·CH ₂ OH(C ₈ H ₁₅ NO ₂)		/ 11	(61.14)	(9.55)	(8.92)
N-(2-hydroxyethyl) 2-hydroxy-1- naphthaldimine	Light greenish	157 155	72.59	6.00	6.53
HO·CI0H6·CH:N·(CH ₂) ₂ ·OH (C ₁₃ H ₁₃ NO ₂)	yellow solid	(661-761)	(72.56)	(6.05)	(6.51)

424 Jain et al.

Asian J. Chem.

Vol. 20, No. 1 (2008)

TABLE-2 PHYSICAL PROPERTIES OF LEAD (IV) DERIVATIVE OF N-(HYDROXYL ALKYL) ALDIMINES

e	Complex/ (colour)	m.p. (°C) / Yield (%)	Elemental analysis:			
yod			Found (Calcd.) %			
0			С	Н	Ν	Pb
C1	$(C_6H_5)_3Pb(C_9H_{10}NO_2)$	240	53.76	4.22	2.23	34.07
	(Light yellow solid)	(87)	(53.82)	(4.15)	(2.32)	(34.38)
C_2	$(C_6H_5)_3Pb(C_{10}H_{12}NO_2)$	238†	54.45	4.43	2.20	33.18
	(Light yellow solid)	(85)	(54.54)	(4.38)	(2.27)	(33.60)
C_3	$(C_6H_5)_3Pb(C_{10}H_{12}NO_2)$	236-237†	54.37	4.45	2.24	32.89
	(Yellow solid)	(72)	(54.54)	(4.38)	(2.27)	(33.60)
C_4	$(C_6H_5)_3Pb(C_{13}H_{12}NO_2)$	207-209	56.89	4.13	2.02	30.67
	(Yellow solid)	(78)	(57.05)	(4.14)	(2.14)	(31.74)
C_5	$(C_6H_5)_3Pb(C_{10}H_{12}NO_2)$	236†	54.57	4.40	2.20	32.67
	(Yellow solid)	(91)	(54.54)	(4.38)	(2.27)	(33.60)
C_6	$(C_6H_5)_3Pb(C_{10}H_{12}NO_2)$	239†	55.10	4.59	2.18	32.76
	(Yellow solid)	(82)	(54.54)	(4.38)	(2.27)	(33.60)
C_7	$(C_6H_5)_3Pb(C_{11}H_{14}NO_2)$	238†	55.17	4.58	2.16	31.27
	(Light yellow solid)	(83)	(55.23)	(4.60)	(2.22)	(32.86)
C_8	$(C_6H_5)_3Pb(C_7H_{12}NO_2)$	195-297†	51.59	4.65	2.37	34.78
	(Light yellow solid)	(81)	(52.63)	(4.73)	(2.45)	(36.31)
C_9	$(C_6H_5)_3Pb(C_8H_{14}NO_2)$	185-287†	52.39	4.87	2.30	33.71
	(Light yellow solid)	(87)	(52.52)	(4.88)	(2.35)	(34.85)
C ₁₀	$(C_6H_5)_3Pb(C_8H_{14}NO_2)$	183-185†	52.93	4.87	2.31	34.01
	(Yellow solid)	(78)	(52.52)	(4.88)	(2.35)	(34.85)

 \dagger = Decomposed.

region 1280-1275 cm⁻¹ due to phenolic (C–O) stretching vibration disappeared in these complexes, which suggests that phenolic oxygen is co-valently bonded with lead atom³ in complexation.

A broad band due to intermolecularly bonded –OH group appears in the region 3500-3300 cm⁻¹ in the spectra of Schiff bases shifts towards the high frequency side and is observed in the region 3755 ± 5 cm⁻¹ (C₁-C₄ complexes). Shifting to the higher frequency can be explained by the absence of hydrogen bonding due to the coordination of alcoholic oxygen to the central lead atom, thus giving rise to a stable octahedral structure to these complexes.

A strong band appeared in the region 1630-1600 cm⁻¹ in the IR spectra of Schiff bases assignable to the azomethine (>C=N–) group shifts to higher frequency region 1640-1635 cm⁻¹ in all complexes except in C₈-C₁₀ in which it is present at 1600-1590 cm⁻¹. It suggests coordination through the azomethine nitrogen to lead atom in the complexes.

	11) 11	DROATEL			
Complex code	v(Pb–O)	v(Pb–N)	v(C=N)	v(C=C)	v(OH)
C_1	470 m	505 s	1645 s	1595 m	3755 b
C_2	485 m	515 s	1642 vs	1590 m	3750 b
C_3	475 m	515 s	1641 vs	1592 m	3750 b
C_4	470 m	525 s	1635 s	1595 m	3750 b
C_5	470 m	520 s	1640 vs	1595 m	3750 b
C_6	460 m	525 s	1641 vs	1590 m	3750 b
C_7	470 m	530 s	1635 vs	1590 m	3755 b
C_8	475 m	525 s	1600 s	1575 m	3750 b
C_9	480 m	500 s	1590 s	1570 m	3755 b
C_{10}	485 m	520 s	1695 vs	1575 m	3755 b

TABLE-3 INFRARED FREQUENCIES (cm⁻¹) OF LEAD (IV) DERIVATIVES OF N-(HYDROXYALKYL) ALDIMINES

Metal-ligand, metal-oxygen and metal-nitrogen vibrations are generally found to occur between 600-200 cm⁻¹ regions. However, in these complexes, it is not easy to assign v(Pb–O) and v(Pb–N) vibrations because various skeletal variations of the Schiff bases interfere with them.

Infrared spectra of these complexes (from C_1 - C_4) show a strong band in the region 575-515 cm⁻¹ in C_1 - C_4 , 530-520 cm⁻¹ in C_5 - C_7 and 525-500 cm⁻¹ in C_8 - C_{10} complexes may be attributed to v(Pb–N) vibration. Two new bands of medium intensity appear in 490-460 cm⁻¹ region C_1 - C_4 , 470-460 cm⁻¹ in C_5 - C_7 and 485-475 cm⁻¹ in C_8 - C_{10} complexes. In these complexes the central lead atom appears to be hexacoordinated. The structures may be octahedral and can be represented as below:

- 1. P. Jain, V. Pathak, B.K. Srivastava and P. Pathak, Int. J. Chem. Sci., 3, 301 (2005).
- 2. R.D. Ross, Inorganic Infrared and Raman Spectra, McGraw-Hill Book Co. (1972).
- 3. S.N. Poddar and N.S. Das, J. Indian Chem. Soc., 50, 431 (1973).

(Received: 11 November 2006; Accepted: 14 September 2007) AJC-5841