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Computing Orbits of Big Fullerenes
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An Euclidean graph associated with a molecule is de-
fined by a weighted graph with adjacency matrix M = dij,
where for i≠j, dij is the elucidean distance between the nuclei
i and j. In this matrix dij can be taken as zero if all the nuclei
are equivalent. Otherwise, one may introduce different
weights for distinct nuclei. In this paper the symmetry of the
big fullerene C320 with point group symmetry Ih together with
its orbits is computed.
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INTRODUCTION

Buckminsterfullerene was observed for the first time in 1985 by Kroto
during graphite laser evaporation experiments1. The name of fullerene goes
back to the name of a geodesic designer. Buckminster Fuller, who designed
the Fuller Dome at the Montreal International Exposition in 19672. C60 has
important applications in diverse areas from fuel cells to pharmaceuticals
for AIDS and Parkinson’s disease1. Fullerenes are allotropic form of
carbon made up of pentagonal and hexagonal faces consisting of even
numbers of of carbon atoms3 and extensive research works have been
carried out since the discovery of the first homologue of these compounds,
buckminsterfullerene, C60. Fullerenes have various applications in
nanotechnology such as for the fabrication of opto-electronic devices4,5.
These compounds are highly symmetrical cage like molecules of carbon
which have been considered as a special class of spherical quasi-aromatic
systems6. There is a mathematical rule as a consequence of the Euler
theorem, which says 12 pentagons are present in each spherical shape of n
hexagons with the exception of n = 1.

Symmetry and its mathematical framework-group theory-play an
increasingly important role in chemistry and physics. Both classical and
quantum systems usually display great complexity, but the analysis of their
symmetry properties often gives rise to simplifications and new insights
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which can lead to a deeper understanding. In addition, symmetries them-
selves can point the way toward the formulation of a correct physical theory
by providing constraints and guidelines in an otherwise intractable situa-
tion. It is remarkable that, in spite of the wide variety of systems one
may consider, all the way from classical ones to molecules, nuclei and
elementary particles, group theory applies the same basic principles and
extracts the same kind of useful information from all of them. This univer-
sity in the applicability of symmetry considerations is one of the most
attractive features of group theory. Most workers have an intuitive under-
standing of symmetry, particularly in its most obvious manifestation in
terms of geometric transformations that leave a body or system invariant.
This interpretation, however, is not enough to readily grasp its deep
connections with physics and it thus becomes necessary to generalize the
notion of symmetry transformations to encompass more abstract ideas.
The mathematical theory of these transformations is the subject matter of
group theory.

Detecting symmetry in 3D models is a well studied problem with
applications in a large number of areas. For instance, the implicit redun-
dancy in symmetric models is used to guide reconstruction, axes of
symmetry provide a method for defining a coordinate system for models
and symmetries are used for shape classification and recognition7.

We first describe some notations which will be kept throughout. A
graph G = (V,E) consists of a finite nonempty set of points with a
prescribed set E of pairs of distinct points of V. In a molecular graph, the
conventional chemical structure, the set of atoms comprises the point set
V and covalent chemical bonds are elements of E. Such a graph retains the
full topology of the molecule and represents molecular structure, where
the word ‘structure’ is used to denote a formal system of relations of
certain logical types without emphasizing the entities to which they relate.
In chemistry, two types of graphs are often employed to model molecular
structure, viz., hydrogen-suppressed graph and hydrogen-filled graphs.
While in the former only the non-hydrogen atoms are represented by points,
in the latter all atoms including hydrogen atoms are represented by vertices.

For real world chemical and spectroscopic applications one needs to
utilize graphs which contain weights for edges, for example, to discrimi-
nate signals and double bonds. In the context of NMR and multiple NMR
spectroscopy, the nuclear spin coupling can be represented by graphs called
NMR graphs. In these examples, the vertices are the various nuclei in
the molecule while the edges are either isotopic J-coupling constants or
dipolar coupling constants. The nuclear coupling constants between the
various nuclei in a molecule are often different as they depend on the
Euclidean distances between the nuclei. Consequently, it is necessary to
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lable the edges of the complete graph of a molecule with the appropriate
nuclear spin-spin coupling constants. The same is true for hyperfine
structure in the ESR spectra8-16.

The GAP systems is a useful package for computing the group struc-
ture, which merits more attention from the chemical community17. One
of the present authors (ARA)18-30 applied this package to solve some prob-
lems in mathematical chemistry related to the symmetry of molecules.

Throughout this paper, all groups considered are assumed to be finite.
Our notation is standard and taken mainly from the standard books graph
theory and group theory. Our computations were carried out with the use
of GAP17. We encourage the reader to consult the work of Ashrafi19, for
background material as well as basic computational techniques.

RESULTS AND DISCUSSION

A permutation matrix is a 0-1 matrix that has exactly 1 in each row or
column and 0s elsewhere. Permutation matrices are the matrix representa-
tion of permutations. In general, for a permutation σ on n objects, the
corresponding permutation matrix is an n-by-n matrix Pσ is given by
Pσ = [xij], where xij = 1, if σ(i) = j and 0 otherwise. We define a permutation
of the vertices of an Euclidean graph G to be an automorphism of G if it
satisfies (Pσ)t A Pσ = A, where (Pσ)t is the transpose of permutation matrix
Pσ and A is the adjacency matrix of graph under consideration. It is easy to
see that the set Aut(G) of all automorphisms of G is a group under compo-
sition of automorphisms.

By symmetry we consider the automorphism group symmetry of the
graph under consideration. The automorphism group of a graph depends
only on the connectivity of the graph and does not depend on how the
graph is represented in three dimensions. That is, a graph, in general, can
be represented in different ways in three dimensions such that two repre-
sentations could yield different three-dimensional symmetries and yet their
automorphism groups are the same since the latter depends only on which
vertices are connected in the graph. For this reason the symmetry of a
graph was thought to be quite different from the point group symmetry and
it is apparent that the two symmetries need not be related to each other.

In mathematics, groups are often used to describe symmetries of
objects. This is formalized by the notion of a group action: every element
of the group ‘acts’ like a bijective map (or ‘symmetry’) on some set. To
clarify this notion, we assume that G is a group and X is a set. G is said to
act on X when there is a map φ : G × X → X such that all elements x ∈ X,
(i) φ(ex) = x where e is the identity element of G and (ii) φ(g, φ(h,x)) =
φ(gh,x) for all g,h ∈ G. In this case, G is called a transformation group, X
is called a G-set and φ is called the group action. For simplicity, we
defined gx = φ(g,x).
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In a group action, a group permutes the elements of X. The identity
does nothing, while a composition of actions corresponds to the action of
the composition. For a given X, the set {gx | g ∈ G}, where the group
action moves x, is called the group orbit of x. The subgroup which fixes is
the isotropy group of x.

In this section, we investigate the symmetry of the big fullerene C320

with point group symmetry Ih. Consider the fullerene C320 to illustrate the
Euclidean graphs and its symmetry group. It suffices to measure the
Euclidean distances in terms of the C–C bond lengths and then construct
the Euclidean distance matrix D. It should be mentioned that one does not
have to work with exact Euclidean distances in that a mapping of weights
into a set of integers would suffice as long as diffeent weights are identi-
fied with different integers. In fact the automorphism group of the integer-
weighted graph is identical to the automorphism group of the original
Euclidean graph.

We notice that all permutations of the vertices of C320 do not belong to
the automorphism group since Aut(C320) has order 120 which is different
from 320!. For example, the permutation (1, 2, ...., 320) does not belong to
the automorphism group since the resulting graph does not preserve
connectivity.

We now discuss techniques that are useful in finding symmetry of
molecules. We begin with three important results that, in certain situations,
are very effective in establishing automorphisms of Euclidean graphs19.

Lemma 1: Suppose A = [aij] and B = [bij] are two matrices and Pσ is a
permutation matrix. If B = PσA(Pσ)t, σ(i) = r and σ(j) = s, then ars = bij.

Lemma 2: Let A = [aij] be the adjacency matrix of a weighted graph
and σ be a permutation such that A = PσA(Pσ)t and σ maps i1 → j1, i2 → j2,
...., it → jt. Then

ai1i1  .  .  .  ai1ai1 aj1j1  .  .  .  aj1aj1

   .    .           .    .    .           .
   .       .        .      =    .       .        .
   .           .    .    .           .    .
ai1i1  .  .  .  ai1ai1 aj1j1  .  .  .  aj1aj1

Lemma 3: Let G be an Euclidean graph, A = Aut(G) and O1, O2 ..., Ot

are orbits of the action of A on the vertices of G. Then for every α ∈ A and
every positive integer i, l ≤ i ≤ t, α(Oi) = Oi.

Using Lemmas 1-3, we can write a Matlab program for computing all
solution of the equation (Pσ)t A Pσ = A. To do this we take the Cartesian
coordinates of the big fullerene C320 from the homepage of Dr. Steffen
Weber at “http://jcrystal.com/steffenweber/”. Our calculations give the
following generating set for the group Aut(C320):
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X320: = (2,5)(3,4)(6,14)(7,13)(8,12)(9,11)(10,15)(16,29)(17,28)(18,27)
(19,26)(20,30)(21,24)(22,23)(32,35)(33,34)(36,56)(37,60)(38,59)(39,58)
(40,57)(41,51)(42,55)(43,54)(44,53)(45,52)(47,50)(48,49)(61,66)(62,65)
(63,64)(69,73)(70,72)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)
(80,119)(81,120)(82,121)(83,122)(84,123)(85,124)(86,125)(87,105)(88,104)
(89,103)(90,102)(91,101)(92,100)(93,106)(94,107)(95,112)(96,111)(97,110)
(98,109)(99,108)(126,127)(128,130)(129,131)(133,135)(134,136)(139,170)
(140,169)(141,168)(142,167)(143,166)(144,165)(145,171)(146,172)(147,177)
(148,176)(149,175)(150,174)(151,173)(152,183)(153,182)(154,181)(155,180)
(156,179)(157,178)(158,184)(159,185)(160,190)(161,189)(162,188)(163,187)
(164,186)(191,218)(192,217)(193,221)(194,222)(195,219)(196,220)(197,223)
(198,226)(199,227)(200,224)(201,225)(202,228)(203,229)(204,248)(205,247)
(206,246)(207,245)(208,244)(209,243)(210,249)(211,250)(212,255)(213,254)
(214,253)(215,252)(216,251)(230,235)(231,234)(232,233)(238,242)(239,241)
(256,261)(257,260)(258,259)(264,268)(265,267)(269,313)(270,312)(271,311)
(272,310)(273,309)(274,308)(275,314)(276,315)(277,320)(278,319)(279,318)
(280,317)(281,316)(282,300)(283,299)(284,298)(285,297)(286,296)(287,295)
(288,301)(289,302)(290,307)(291,306)(292,305)(293,304)(294,303).

Y320: = (1,2)(3,5)(6,19)(7,18)(8,17)(9,16)(10,20)(11,14)(12,13)(21,29)
(22,28)(23,27)(24,26)(25,30)(31,35)(32,34)(36,51)(37,55)(38,54)(39,53)
(40,52)(41,46)(42,50)(43,49)(44,48)(45,47)(57,60)(58,59)(61,74)(62,75)
(63,76)(64,77)(65,78)(66,79)(67,80)(68,81)(69,82)(70,83)(71,84)(72,85)
(73,86)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)
(95,121)(96,122)(97,123)(98,124)(99,125)(100,105)(101,104)(102,103)(108,112)
(109,111)(126,166)(127,165)(128,169)(129,170)(130,167)(131,168)(132,171)
(133,174)(134,175)(135,172)(136,173)(137,176)(138,177)(139,196)(140,195)
(141,194)(142,193)(143,192)(144,191)(145,197)(146,198)(147,203)(148,202)
(149,201)(150,200)(151,199)(152,209)(153,208)(154,207)(155,206)(156,205)
(157,204)(158,210)(159,211)(160,216)(161,215)(162,214)(163,213)(164,212)
(178,183)(179,182)(180,181)(186,190)(187,189)(217,218)(219,221)(220,222)
(224,226)(225,227)(230,243)(231,244)(232,245)(233,246)(234,247)(235,248)
(236,249)(237,250)(238,251)(239,252)(240,253)(241,254)(242,255)(256,308)
(257,309)(258,310)(259,311)(260,312)(261,313)(262,314)(263,315)(264,316)
(265,317)(266,318)(267,319)(268,320)(269,300)(270,299)(271,298)(272,297)
(273,296)(274,295)(275,301)(276,302)(277,307)(278,306)(279,305)(280,304)
(281,303)(282,287)(283,286)(284,285)(290,294)(291.293).

Z320: = (1,6,50,41,18)(2,7,46,42,19)(3,8,47,43,20)(4,9,48,44,16)(5,10,
49,45,17)(11,12,13,14,15)(21,30,53,31,40)(22,26,54,32,36)(23,27,55,33,37)
(24,28,51,34,38)(25,29,52,35,39)(56,60,59,58,57)(61,126,182,169,76)(62,127,
183,170,77)(63,128,179,166,74)(64,129,178,165,75)(65,130,181,168,79)
(66,131,180,167,78)(67,132,184,171,80)(68,133,189,176,85)(69,134,188,
175,82)(70,135,185,172,83)(71,136,190,177,86)(72,137,187,174,81)(73,138,
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186,173,84)(87,114,153,285,209)(88,113,152,284,208)(89,117,156,287,207)
(90,118,157,286,206)(91,115,154,282,205)(92,116,155,283,204)(93,119,158,
288,210)(94,122,161,291,211)(95,123,162,294,216)(96,120,159,293,215)
(97,121,160,290,214)(98,124,163,289,213)(99,125,164,292,212)(100,144,
298,273,196)(101,143,297,274,195)(102,142,300,270,194)(103,141,299,269,193)
(104,140,295,272,192)(105,139,296,271,191)(106,145,301,275,197)(107,146,
304,280,198)(108,151,307,279,203)(109,150,306,276,202)(110,149,303,
281,201)(111,148,302,278,200)(112,147,305,277,199)(217,243,309,256,231)
(218,244,308,257,230)(219,245,312,258,234)(220,246,313,259,235)(221,247,
310,260,232)(222,248,311,261,233)(223,249,314,262,236)(224,250,317,263,239)
(225,251,318,264,240)(226,252,315,265,237)(227,253,316,266,238)(228,254,
319,267,241)(229,255,320,268,242).

Using the generating set and the following GAP program, one can see
that the group Aut(C320) has exactly five orbits AA, CC, DD, KK, LL under
its natural action. AA = {1, 2, ..., 60}; CC = {61,62,63,64,65,66,74,75,76,77,
78,79,87,88,89,90,91,92,100,101,102,103,104,105,113,114,115,116,117,118,
126,127,128,129,130,131,139,140,141,142,143,144,152,153,154,155,156,157,
165,166,167,168,169,170,178,179,180,181,182,183,191,192,193,194,195,196,
204,205,206,207,208,209,217,218,219,220,221,222,230,231,232,233,234,235,
243,244,245,246,247,248,256,257,258,259,260,261,269,270,271,272,273,274,
282,283,284,285,286,287,295,296,297,298,299,300,308,309,310,311,312,313];
DD = {67,80,93,106,119,132,145,158,171,184,197,210,223,236,249,262,
275,288,301,314}; KK = {68,70,72,81,83,85,94,96,98,107,109,111,120,
122,124,133,135,137,146,148,150,159,161,163,172,174,176,185,187,189,
198,200,202,211,213,215,224,226,228,237,239,241,250,252,254,263,265,
267,276,278,280,289,291,293,302,304,306,315,317,319} and LL = {69,71,
73,82,84,86,95,97,99,108,110,112,121,123,125,134,136,138,147,149,151,
160,162,164,173,175,177,186,188,190,199,201,203,212,214,216,225,227,
229,238,240,242,251,253,255,264,266,268,277,279,281,290,292,294,303,
305,307,316,318,320}.

A GAP program for computing of orbits of the symmetry group of
C320

G:=Group(X320,Y320,Z320);
H:=Elements(G);
F:=[1,2..320]:
A:=[];

for i in H do
t:=l^i;
Add(A,t);

od;
AA:=Set(A);
C:=[]
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for i in H do
t:=61^i;
Add(C,t);

od;
CC:=Set(C);
D:=[];

for i in H do
t:=67^i;
Add(D,t);

od;
DD:=Set(D);
K:=[];

for i in H do
t:=68^i;
Add(K,t);

od;
KK:=Set(K);
L:=[];

for i in H do
t:=69^i;
Add(L,t);

od;
LL:=Set(L);
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