Asian Journal of Chemistry

FTIR Spectroscopic Study of 2-Hydroxy-4-methyl Pyrimidine Hydrochloride

B.S. YADAV*, PRITI YADAV, PRADEEP KUMAR and VAISHALI Molecular Spectroscopy and Biophysics Laboratory, Department of Physics Deva Nagri Postgraduate College, Meerut-250 002, India

The FTIR absorption spectrum of 2-hydroxy-4-methyl pyrimidine hydrochloride has been recorded on Perkin Elmer spectrophotometer and analyzed in the region 4000-400 cm⁻¹ using Nujol mull technique. The modes of vibration for the different fundamentals have been proposed. The group sensitive fundamentals are compared with those of similar molecules.

Key Words: FTIR, 2-Hydroxy-4-methylpyrimidine hydrochloride.

INTRODUCTION

Inspite of great biological importance of N-heterocyclic molecules like pyrimidine, cytosine uracil and their derivatives, lesser spectroscopic work has been carried out on pyrimidine compounds^{1,2}. Although the vibrational spectra of some disubstituted pyrimidines have been studied by some workers³; but very little work appears on the FTIR spectra of disubstituted pyrimidines. N-Heterocyclic molecules like pyrimidine, uracil and cytosine also show a great importance as they play a central role in the structure and properties of nucleic acids⁴⁻⁶. Hence the present investigation has been undertaken to study the infrared spectrum of 2-hydroxy-4-methyl pyrimidine hydrochloride and to identify the frequencies of different modes of vibration in the molecule.

EXPERIMENTAL

The spec-pure grade sample of 2-hydroxy-4-methyl pyrimidine hydrochloride (2,4-HMP-HCl) (Fig. 1) was obtained from M/s Aldrich Chemie, Germany and used as such. The purity of the compound was also confirmed by elemental analysis and melting point determination. The FTIR absorption spectrum of 2,4-HMP-HCl was recorded on Perkin Elmer spectrophotometer in the region 4000-400 cm⁻¹ using Nujol mull technique.

Fig. 1. Structure of 2-hydroxy-4-methyl pyrimidine hydrochloride

274 Yadav et al.

Asian J. Chem.

RESULTS AND DISCUSSION

The observed fundamental frequencies and their proposed assignments are given in Table-1.

FTIR frequencies	Intensity	Assign.	FTIR frequencies	Intensity	Assign.
432	ms	(O-H) torsion, (H-	1377	ms	CH ₃ sym. def.
		Cl) wagging			
512	S	γ(C–N)	1403	S	CH ₃ asym. def.
530	S	β (C–CH ₃)	1426	S	v ring
588	S	β (C–OH)	1523	ms	v ring
611	W	γ(C–C), γ(N–H)	1556	ms	v(C–C)
761	S	Ring breathing, C-	1581	S	v(C–C)
		N–C trigonal			
		bending			
837	S	γ(C–H)	1627	S	v(C–N)
919	ms	$\beta(C-C)$	1650	ms	v(C–N), v(N–H)
925	S	β(C–N), C–C–C	2900	ms	v sym. CH ₃
		trigonal bending			
1026	ms	β (C–N)	2949	W	v asym. CH3
1035	ms	CH ₃ rocking	2981	S	v asym. CH ₃
1158	S	β (C–H)	3010	VW	v(C-H)
1190	ms	v(CCH ₃)	3038	vw	v(C-H)
1230	S	β(O–H)	3154	S	v(N–H)
1250	S	v(C–OH)	3460	W	ν(O–H)

TABLE-1 ASSIGNMENTS OF FREQUENCIES OF 2,4-HMP-HCl (All values are in cm⁻¹)

Ring vibration

The molecule 2,4-HMP-HCl is a disubstituted pyrimidine, so two C-H valence oscillations are expected in the region 3100-3000. Thus, two bands at 3038 and 3010 cm⁻¹ have been assigned to C–H stretching mode in the study of present molecule. These assignments are in good agreement with the literature values^{6,7}.

In disubstituted pyrimidine derivatives, two modes of vibration remain almost unchanged and are called C–H in-plane bending and out-of-plane bending vibrations. The C–H in-plane and C-H out-of-plane bending modes lie in the region 1500-1000 and 1000-750 cm⁻¹, respectively^{8,9}, in view of this the bands at 837 and 1158 cm⁻¹ represent the C–H in-plane and C–H out-of-plane bending modes. Vol. 20, No. 1 (2008) Spectroscopic Study of 2-Hydroxy-4-methyl Pyrimidine 275

In the present study the two C–C stretching vibrations have been assigned at 1581 and 1556 cm⁻¹, while the C–C in-plane bending mode has been observed at 919 cm⁻¹ and the C–C out-of-plane bending vibration is identified at 611 cm⁻¹. In the present molecule 2,4-HMP-HCl a C–C–C trigonal bending vibration is also observed at 925 cm⁻¹. These assignments are satisfied with the work of earlier workers^{8,10}.

Singh *et al.*³ assigned the C–N stretching mode in the region 1650-1400 cm⁻¹, while Yadav *et al.*¹³ assigned this mode at 1560 cm⁻¹ in disubstituted pyrimidine. In view of this the bands at 1650 and 1627 cm⁻¹ have been assigned as C–N stretching mode. The two C–N in-plane bending and a single out-of-plane bending modes are observed at 925, 919 and 512 cm⁻¹, respectively in the present investigation, while a C–N–C trigonal bending is detected at 761 cm⁻¹ in the molecule 2,4-HMP-HCl, which finds support with the work of earlier researchers^{11,12}.

In the present molecule N–H stretching, in-plane bending and out-ofplane bending modes of vibration are possible due to the migration of H⁺ atom of HCl to the N atom of the ring¹⁵. So the band observed at 3154, 1650 and 611 cm⁻¹ have been assigned as N-H stretching, in-plane bending and out-of-plane bending vibrations in the present study which is in good agreement with the earlier literature^{13,14}.

With the support of earlier literature^{10,11} the few bands have been assigned at 1523, 1426 and 761 cm⁻¹ as ring stretching and ring breathing modes.

C-X Vibration

Singh *et al.*⁹ have assigned C–OH stretching mode at 1301 and 1260 cm^{-1} in dihydroxy pyrimidine. In the present study the band observed at 1250 cm^{-1} has been assigned as C–O–H stretching mode while a band at 588 cm^{-1} is observed as C–OH in-plane bending vibration in the present molecule.

Mohan *et al.*¹⁷ have assigned to C–CH₃ stretching vibration at 1200 cm⁻¹ in 2,4,6-D MHP. In the present investigation the band observed at 1190 cm⁻¹ in 2,4-HMP-HCl has been taken to represent C–CH₃ stretching mode. Yadav *et al.*¹⁰ have observed the C–CH₃ in-plane bending mode at 570 cm⁻¹, while in the molecule 2,4-HMP-HCl the band identified at 530 cm⁻¹ as C–CH₃ in-plane bending vibration.

Group vibration

-OH Group: The –OH group gives rise to three characteristic vibrations *i.e.* stretching, in-plane bending and out-of-plane bending. Molecules containing –OH group, the O–H valance oscillation appears in the region 3700-3450 cm⁻¹. Patel and Simoes¹⁵ have assigned this mode at 3500 cm⁻¹. In view of this a band observed at 3460 cm⁻¹ have been assigned as O–H stretching mode, while the bands observed at 1230 and 432 cm⁻¹ are identified as O–H in-plane bending and O-H torsion modes, respectively in the present investigation, which is in good agreement with the literature values¹⁶.

-CH₃ Group: The C–H stretching and C–H deformation due to methyl group have been assigned in their respective region in Table-1. The CH₃ rocking mode has been identified at 1035 cm⁻¹. In the methyl group there are three C–H stretching vibrations are possible, one being symmetric and the other two asymmetric¹⁷. The frequencies of asymmetric vibration are higher than that of symmetric. In the present case the frequencies 2981 and 2949 cm⁻¹ have been assigned to asymmetric stretching while the frequency 2900 cm⁻¹ has been assigned to symmetric stretching. In the present investigation two CH₃ symmetric deformation modes have also been identified at 1403 and 1377 cm⁻¹. These are in good accordance with the values reported in the literature¹⁷.

REFERENCES

- 1. B. Singh and R.P. Singh, *Indian J. Phys.*, **75B**, 373 (2001).
- 2. H.I. Abdulla and M.F. El-Bermani, Spectrochim. Acta, 57A, 2659 (2001).
- 3. D.N. Singh, I.D. Singh and R.A. Yadav, *Indian J. Phys.*, **76B**, 307 (2002).
- 4. V.K. Kumar and V. Balachandran, Indian J. Pure Appl. Phys., 39, 623 (2001).
- 5. B.S. Yadav, V. Kumar, V. Singh and B.S. Semwal, *Indian J. Pure Appl. Phys.*, **37**, 34 (1999).
- 6. V.K. Kumar and R.R. Sany, *Indian J. Pure Appl. Phys.*, 40, 252 (2002).
- 7. S. Gunasekaran, V.P. Balam, S. Muthu and L. Mariappan, *Asian J. Phys.*, **12**, 1251 (2003).
- 8. B.S. Yadav, M.K. Yadav and A.K. Pundir, Acta Cinec. Indica, 26, 47 (2002).
- 9. B.S. Yadav and V. Singh, Spectrochim. Acta, 55A, 1267 (1999).
- 10. B.S. Yadav, V. Singh, Seema and S. Chand, Indian J. Phys., 71B, 697 (1997).
- 11. V.K. Kumar and R. Ramasamy, Indian J. Pure Appl. Phys., 41, 258 (2003).
- 12. V.K. Kumar and R.J. Xavier, Indian J. Pure Appl. Phys., 41, 597 (2003)
- 13. B.S. Yadav, M.K. Singh and A. Gupta, Orient. J. Chem., 18, 501 (2002).
- 14. S. Gunasekaran, K. Natarajan and K. Santhosam, Asian J. Chem., 15, 1347 (2003).
- 15. P.J. Simoes and H.D. Patel, Orient. J. Chem., 20, 411 (2004).
- 16. N. Sundaraganesan, H. Saleem and S. Mohan, Indian J. Phys., 78, 489 (2004).
- 17. B.S. Yadav, N. Kumar, M.K. Singh and M.K. Yadav, Indian J. Phys., 80, 61 (2006).

(Received: 30 September 2006;

Accepted: 5 September 2007)

AJC-5818