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The PI and Szeged are two of most important topological indices
defined in chemistry. In this paper, we compute the PI and Szeged indi-
ces of some important classes of benzenoid systems and nanostars. Some
open questions are also included in the paper.
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INTRODUCTION

Let G be a simple molecular graph without directed and multiple edges
and without loops, the vertex and edge-sets of which are represented by
V(G) and E(G), respectively. A topological index of a graph G is a numeric
quantity related to G. The oldest topological index is the Wiener index.
Numerous of its chemical applications were reported and its mathematical
properties are well understood1-4. We encourage the reader to consult two
survey articles by Dobrynin and co-authors5,6 and references therein for a
good information on the topic.

Khadikar and co-authors7-10 defined a new topological index and named
it Padmakar-Ivan index. They abbreviated this new topological index as
PI. This newly proposed topological index does not coincide with the Wiener
index for acyclic molecules. It is defined as PI(G) = ∑e∈G[neu(e|G) + nev(e|G)],
where nu(e|G) is the number of edges of G lying closer to u than to v and
nv(e|G) is the number of edges of G lying closer to v than to u.

The Szeged index is another topological index which is introduced by
Ivan Gutman11-13. To define the Szeged index of a graph G, we assume that
e = uv is an edge connecting the vertices u and v. Suppose Nu(e|G) is the
number of vertices of G lying closer to u and Nv(e|G) is the number of
vertices of G lying closer to v. Edges equidistance from u and v are not
taken into account. Then the Szeged index of the graph G is defined as
Sz(G) = ∑e = uv∈E(G)Nu(e|G)Nv(e|G).
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We now describe some notations which will be kept throughout. Ben-
zenoid systems (graph representations of benzenoid hydrocarbons) are
defined as finite connected plane graphs with no cut-vertices, in which all
interior regions are mutually congruent regular hexagons. More details on
this important class of molecular graphs can be found in the book of Gutman
and Cyvin14 and in the references cited therein.

In this paper we only consider connected graphs. Our notation is stan-
dard and mainly taken from work of previous authors2,14-16.

PI and Szeged indices of some nanostars and benzenoid graphs

In this section we compute some topological indices of two types of
nanostars and benzenoid graphs. To do this, we assume that N(e) = |E| -
(neu(e|G) + nev(e|G)). Then PI(G) = |E|2 - Se∈E N(e) → PI(G) = |E|2 - Σe∈E

N(e). Therefore, for computing the PI index of G, it is enough to calculate
N(e), for every e ∈ E.

PI and Szeged indices of Kn,n Hexagonal system:  Shiu et al.17, the
authors defined a new hexagonal system named jagged-rectangle. An n ×
m hexagonal jagged-rectangle whose shape forms a rectangle and the num-
ber of hexagonal cells in each chain alternate between n and n-1. Yousefi
et al.18 computed the PI and Szeged indices of two types of hexagonal
jagged-rectangle, In,(n+1)/2 and Jn,n/2. We continue this program to compute
the PI and Szeged indices of a Kn,n, n ≥ 2, defined as V(Kn,m) = {(x,y) | 0 ≤
x ≤ 2n, 0 ≤ y ≤ 2m-1} ∪ {(x,-1) | 0 ≤ x ≤ 2n-1} ∪ {(x,2m) | 1 ≤ x ≤ 2n-1}.

Fig. 1. The Graph K4,2

One can see that Kn,n has exactly m = |E(Kn,n)| = 2(n+1)(n-1) + 2n(2n+1)
= 6n2 + 2n -2 and also v = |V(Kn,n)| = n(2n+1)+(n+1)(2n-1) = 4n2 + 2n -1.
To compute PI index of this chemical graph, we consider two types of
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edges, vertical and oblique. At first, we assume that A is the set of all
vertical edges of this graph and e ∈ A. If e is an edge of the 1s, 3rd, …,
(n+1)th row of the graph then N(e) = n and also, N(e) = n+1, otherwise.

Therefore, Se∈AN(e) = ∑∑ +
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There are two types of oblique edges, left and right. For the symmetry of
the graph, it is enough to compute Se∈BN(e), where B is the set of all left
oblique edges Kn,n. Then PI(Kn,n) = |E|2 – [2n4 + 4n3 + 2n2 + 2Σe∈BN(e)]. But
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and so PI(Kn,n) = 34n4 + 52/3n3 – 2n2 – 238/3n + 54. We now compute the
Szeged index of this graph. To do this, we assume that ai = (2n – 1)(i + 1) +

i(2n + 1), bi = (2n + 1)i + i(2n – 1) and  ∑ =
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= ∑e=uv∈A Nu(e|G)Nv(e|G) + 2∑e=uv∈B Nu(e|G)Nv(e|G)
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= 16/3n6 – 32/5n5 + 25/3n4 + 9n3 – 38/3n2 – 48/5n

PI and Szeged indices of Tb,a Hexagonal system:  A hexagonal trap-
ezoid T = Tb,a is a hexagonal system consisting a-b+1 rows of benzenoid
chain in which every row has exactly one hexagon less than the immediate
row, Fig. 2.

Fig. 2. The Graph T3,5

In this section, the PI and Szeged indices of a hexagonal trapezoid T =
Tb,a is computed. It is easy to see that |E(T)| = 3/2a2 – 3/2b2 + 5/2a – 1/2b
and v = |V(T)| = -b2 + a2 + 2a + 1. Similar to our calculations as above, we
consider two separate classes A and B of vertical and oblique edges,
respectively. We have:
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Therefore, PI(T) = |E(T)|2 – Σe∈AN(e) – Σe∈BN(e) = 9/4a4 – 9/2a2b2 + 41/
6a3 + 1/2a2b + 9/4b4 – 19/2b2a + 13/6b3 + 13/4a2 + 3/2ab – 3/4b2 – 13/3a +
1/3b – a. To compute the Szeged index of this graph, assume that A is the
set of all vertical edges of this graph and e ∈ A. If e = uv is an edge of the
ith row of the graph then Nu(e|T)Nv(e|T) = (2b + 2i + 1)(v – 2b – 2i – 1) and
so Σe=uv∈A Nu(e|T)Nv(e|T) = 2/3a5 + 4/3b2a3 + 13/6a4 – 2b3a2 + 19/6a3 – 9ab3

– 2ab4 + 7ba2 – 5/2a2b2 + 13/6b2a + 2ba4 + 4/3a2 + 13/3ba + 11/3ba3 – 1/3a.
We now consider oblique edges of T. Using a similar calculation as above,
we can see that
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calculation shows that Sz(T) = –36 + 108b – 84a – 391/3b2 – 39b4a – 158/
3a2 + 183ab + 32/3b5 + 166/3b3a2 + 673/6a2b – 1205/6ab2 + 109/3a3b –
125a2b2 + 125ab3 + 6a4b + 5/3a5 – 31/6a3 + 563/6b3 + 5a4 – 124/3b4 –104/
3a3b2 + 1/6a6 – 5/2a4b2 + 20/3a3b3 – 15/2a2b4 – 5/6b6 + 4ab5.

PI Indices of two types of Nanostars:  The subject of Nanostar is one
of the main topics of Nanobiotechnology. In recent years, the Nanostar, a
phenylacetylene dendrimer, has attracted attention due to its potential
applications19-23. The Nanostar absorbs ultraviolet photons at its terminal
groups and the energy transfers from the periphery to the core where it is
collected with 99 % efficiency and then it is emitted in the visible range.
This energy transfer process is in the order of picoseconds. Due to its
localized excitations, the Nanostar was studied as the sum of separate units,
which are 24 two-ring systems, 4 three-ring systems, 2 four-ring systems
and a core. The aim of this section is computing the PI index of two types
of Nanostars I and II, Figs. 3 and 4.

Suppose G = G(n,k) is the graph of a Nanostar of type I. From Fig. 3,
we can see that if e is an edge of a hexagon of G then N(e) = 2, otherwise
N(e) = 1. We assume that A is the set of all hexagons, B is the set of all
edges outside A, a = |A| and b = |B|. We calculate that a = 1 + 2n + 22(n–1)
+ 23(n–2) + … + 2k+1(n–k) + 2k+1 and b = a–1+2k+2. Therefore,  Σe∈AN(e) =
12a and Σe∈BN(e) =  b. Hence PI(G) = |E(G)|2 – Σe∈AN(e) – Σe∈BN(e) = 36a2
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Fig. 3. A Nanostar of Type I, with n = 3 and k = 1

+ b2 + 12ab – 12a–b. We now compute the PI index of the Nanostar H =
H(n,k) of type II, Fig. 4. A similar argument as above, shows that if e is an
edge of a hexagon of H then N(e) = 2, otherwise N(e) = 1. Suppose A, B, a
and b are defined as above. Then a = 1 + k(1+2 + 22 + … + 2n) = 1 + k(2n+1

– 1) and b = a – 1. Therefore, Σe∈AN(e) =  12a and Σe∈BN(e) =  b. Hence
PI(G) = |E(G)|2 – Σe∈AN(e) – Σe∈BN(e) = 36a2 + b2 + 12ab – 12a–b.

Fig. 4. A Nanostar of Type II, with n = 3 and k = 1

Conclusion

At the end, the two questions are arised: (1) Is there a simple closed for-
mula for the Szeged indices of a Nanostar of types I and II?  (2) Is it true
that for every positive integer n, there exists a Nanostar T with this condi-
tion that PI(T) = n or Sz(T) = n?

Vol. 20, No. 1 (2008) Topological Indices of Benzenoid and Nanostars  19



ACKNOWLEDGEMENT

One of the author, was in part supported by a grant from the Center of
Excellence of Algebraic Methods and Applications of the Isfahan  Univer-
sity of Technology.

REFERENCES

1. H. Wiener, J. Am. Chem. Soc., 69, 17 (1947).
2. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley, Weinheim

(2000).
3. D.E. Needham, I.C. Wei and P.G. Seybold, J. Am. Chem. Soc., 110, 4186 (1988).
4. G. Rucker and C. Rucker, J. Chem. Inf. Comput. Sci., 39, 788 (1999).
5. A.A. Dobrynin, R. Entringer and I. Gutman, Acta Appl. Math., 66, 211 (2001).
6. A.A. Dobrynin, I. Gutman, S. Klavzar and P. Zigert, Acta Appl. Math., 72, 247 (2002).
7. P.V. Khadikar, Nat. Acad. Sci. Lett., 23, 113 (2000).
8. P.V. Khadikar, P.P. Kale, N.V. Deshpande, S. Karmarkar and V.K. Agrawal, J. Math.

Chem., 29, 143 (2001).
9. P.V. Khadikar and S. Karmarkar, J. Chem. Inf. Comput. Sci., 41, 934 (2001).
10. P.V. Khadikar, S. Karmarkar and R.G. Varma, Acta Chim. Slov., 49, 755 (2002).
11. M.V. Diudea and I. Gutman, Croat. Chem. Acta, 71, 21 (1998).
12. I. Gutman, Graph Theory Notes of New York, 27, 9 (1994).
13. O.M. Minailiuc, G. Katona, M.V. Diudea, M. Strunje, A. Graovac and I. Gutman,

Croat. Chem. Acta, 71, 473 (1998).
14. I. Gutman and S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons,

Springer-Verlag, Berlin (1989).
15. P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University

Press, Cambridge (1994).
16. N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL (1992).
17. W.C. Shiu, C.S. Tong and P.C.B. Lam, Discrete Appl. Math., 80, 83 (1997).
18. H. Yousefi, B. Manoochehrian and A.R. Ashrafi, Ars Combinatoria, 84, 255 (2007).
19. T. Minami, S. Tretiak, V. Chernyak and S. Mukamel, J. Lumin., 87-89, 115 (2000).
20. A.R. Ashrafi and A. Loghman, MATCH Commun. Math. Comput. Chem., 55, 447

(2006).
21. A.R. Ashrafi and A. Loghman, J. Comput. Theor. Nanosci., 3, 378 (2006).
22. S. Yousefi and A.R. Ashrafi, MATCH Commun. Math. Comput. Chem., 56, 169 (2006).
23. S. Yousefi and A.R. Ashrafi, J. Math. Chem., (2007) (In press).

(Received: 26 May 2006;          Accepted: 23 July 2007)           AJC-5778

20  Yousefi-Azari et al. Asian J. Chem.


