Asian Journal of Chemistry

Vol. 20, No. 3 (2008), 2459-2460

NOTE

Reactions of Micronutrient Metal Ions with Urinary Stone Forming Minerals

BASABI MAHAPATRA (CHOUDHURY)*, NAGMA SIDDIQUI[†], Ashish Kumar[†] and Madhu Rani Sinha[†] Department of Chemistry, Patna Women's College, Bailey Road, Patna-800 001, India

Micronutrient metal ions were added to the inhibitor solutions of different amino acids such as glycine, β -alanine, L-cystine and hippuric acid with a view to study the increase or decrease of the inhibition efficiency of mineralization of urinary sone forming minerals. Micronutrient metal ions increase the inhibition up to some extent.

Key Words: Urinary stone, Micronutrients.

Micronutrient metal ions viz., Mn^{2+} , Fe^{2+} , Ni^{2+} , Cu^{2+} and Zn^{2+} are important for the life process. Though required in trace amounts they are essential for various enzymatic processes. They form part of urinary system. They have high coordinating abilities¹ and their complexing tendency towards the calcium precipitating ligands present in the urinary system²⁻⁴ might effect the mineralization inhibition efficiency of complexons.

The effect of micronutrient metal ions⁵ on the inhibiton effciency was studied in the Reservoir dynamic model. In the inhibitor's reservoir, (50 mL, 0.001 M inhibitor solution in water) calculated quantity of solid metal salts were added so that the concentration of metal salts was 0.0003 M in the reservoir. Two salt forming solutions [0.01 M CaCl₂ and 0.01 M Ca₃(PO₄)₂] were taken in two separate burettes (50 mL each) and was allowed to fall dropwise in the reservoir. The reaction mixture was stirred continuously over a magnetic stirrer. Similar experiments were done with 0.01 M CaC₂O₄ and 0.01 M CaCO₃ with different inhibitor solutions (glycine, β -alanine, L-cystine and hippuric acid) (Table-1).

Inhibitor efficiency was calculated separately with different inhibitors in RDM also. This is to compare the efficiencies with micronutrient metal ions. Increase or decrease of inhibition efficiency was recorded.

[†]Department of Chemistry, Patna University, Patna-800 005, India.

2460 Mahapatra (Choudhury) et al.

Asian J. Chem.

Inhibitor (50	Micronutrient metal	Increase (+) or decrease (-) of		
mL 0.001 M	ion (0.0003 M w.r.t.	inhibition (%) over inhibitor used		
solution)	main inhibitor)	$Ca_3(PO_4)_2$	CaC_2O_4	CaCO ₃
Glycine	Mn ²⁺	+ 49.7	+ 23.03	- 11.6
Glycine	Fe ²⁺	+ 50.7	+25.90	- 22.8
Glycine	Bi ²⁺	+ 37.9	+ 46.90	- 31.1
Glycine	Cu ²⁺	-6.5	+ 54.60	- 19.9
Glycine	Zn^{2+}	+ 39.4	+ 33.50	+ 14.1
β–Alanine	Mn ²⁺	+ 10.68	+ 48.9	+ 16.65
β–Alanine	Fe ²⁺	- 11.80	+ 34.9	- 29.90
β–Alanine	Bi ²⁺	+ 2.10	+ 60.7	- 31.30
β–Alanine	Cu ²⁺	+ 7.20	+ 42.9	-23.70
β–Alanine	Zn^{2+}	+ 5.00	+ 39.0	- 34.75
L-Cystine	Mn ²⁺	+ 5.0	- 19.50	- 7.23
L-Cystine	Fe^{2+}	+ 9.3	- 17.76	- 75.80
L-Cystine	Bi ²⁺	+ 4.5	- 5.50	- 6.99
L-Cystine	Cu ²⁺	+ 9.0	-20.50	- 5.15
L-Cystine	Zn^{2+}	-28.8	-18.80	- 5.43
Hippuric acid	Mn ²⁺	- 10.80	- 5.22	- 6.50
Hippuric acid	Fe ²⁺	-9.25	- 1.72	-20.50
Hippuric acid	Bi ²⁺	+ 26.02	-9.82	- 15.90
Hippuric acid	Cu ²⁺	+ 2.90	-2.48	- 31.83
Hippuric acid	Zn^{2+}	- 51.10	-2.82	- 16.53

TABLE-1

Conclusion

Phosphate inhibition is mostly increased by micronutrient metal ions. There was a decrease in Carbonate inhibition efficiency almost by all the micronutrients. In all the reactions Mn^{2+} and Ni^{2+} were found to be the most effective micronutrient metal ions in increasing the inhibition efficiency of inhibitors.

REFERENCES

- 1. A.K. Banerji, T.V.R.K. Rao and S.K. Roy, J. Indian Chem. Soc., 63, 460 (1986).
- E. Shorr, T.P. Alamy, H. Sloan, H. Taussky and V. Toscani, *Science*, 96, 587 (1942).
 G. Rajagopal, K. Venkatesan, P. Ranganathan and S. Ramkrishnan, *Toxicol. Appl.*
- Pharmacol., 39, 543 (1977).
- 4. S. Kumar and R.K. Fethi, Indian J. Med. Res., 63, 116, (1975).
- 5. D.M. Vasudevan and S. Sreekumari, Text Book of Bio-chemistry, Jaypee Brothers Medical Publishers (P) Ltd. New Delhi, India, edn. 2, p. 440 (1999)