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New equations have been proposed for the evaluation of
the kinetic parameters from non-isothermal thermogravimetry.
The Arrhenius temperature integral, ln p(x), values were com-
puted from the recently proposed series and approximations.
The validity of the new equations has been confirmed by the
analysis of theoretical and experimental thermogravimetric
curves. The kinetic parameters computed using the proposed
equations show better agreement for theoretical TG curves
than the well-known methods.
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INTRODUCTION

Non-isothermal methods have been extensively used for the study of
the kinetics and mechanism of condensed phase reactions1. In general, most
methods of kinetic analysis of thermoanalytical data begin with the
Arrhenius' equation,

k = A exp(-E/RT) (1)
and a rate expression

)α(kf
dt

αd
= (2)

In first equation, E, T, R, A and k are the energy of apparent activation
(kJ mol-1), absolute temperature, gas constant in kJ/mol, Arrhenius factor
and specific rate constant, respectively. In eqn. 2, f(α) is a so-called kinetic
function that depends on the reaction mechanism, where α represents the
fractional conversion (increasing from 0 to 1) in the solid reactant during
the course of the reaction. With a constant temperature increase, dT/dt = β,
(β is the heating rate in ºC/min) integration of eqn. 2 leads to
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where p(x) is an exponential function of temperature and has no closed-
form solution. The left-hand side of this equation is known as the conver-
sion integral g(α) and can be derived for each f(α) used.

From the logarithmic form of eqn. 3

ln g(α) - ln p(x) = ln
βR

AE
 (4)

is obtained.
It is readily seen that the right-hand side is dependent of temperature,

while the left-hand side is temperature independent. There are many series
expansions for p(x), which has either a series solution or a numerical
integral solution. Because the Arrhenius temperature integral and p(x) or
p(E/RT) have no closed-form solutions, Schlömilch series2 and asymptotic
expansions3 given in Table-1, are the most important.

New approximations

We propose two new series approximation for the Lagrange interpolation4.
Elements of base for Lagrange interpolation: x(x-1) for [-1,1]

x(x-1)(x+1) for [-2,1]
x(x-1)(x+1)(x+2) for [-3,1]
x(x-1)(x+1)(x+2)(x+3) for [-4,1]
 x(x-1)(x+1)(x+2)(x+3)(x+4) for [-5,1]

The first approximation p(x) functions for the approximate values;
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Elements of base for Lagrange interpolation: x(x-1) for [-1,1]
 x(x-1)(x+1) for [-2,1]

 x(x-1)(x+1)(x+2) for [-3,1]
 x(x-1)(x+1)(x+2) for [-4,1] ¢-3

The second approximation p(x) functions for the approximate values;
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The validity of the proposed approximations for p(x) given in eqns. 5
and 6 was tested with reference to the Schlömilch series. A comparison is
made with the other approximations given in Table-2. For a typical value
of x = 20, % deviation of each proposed approximation from that of the
Schlömilch was calculated.
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TABLE-2 
COMPARISON OF ln p(x) FROM DIFFERENT  

APPROXIMATIONS FOR x = 20  

Approximations -ln p(x) % deviation from 
Schlömilch × 106 

Schlömilch2 

Semi-convergent3 

Series3 

Three-term5 

Two-term3 

Van test10 

Senum and Yang11 

Reich and Stivala12 

Gorbachev13 

Zsako8 

Flynn and Wall9 

First series 
Second series 

26.0829514 
26.0830043 
26.0829519 
26.0829518 
26.0824362 
26.0829392 
26.0829427 
26.0829797 
26.0867747 
26.0847926 
26.0852989 
26.0829515 
26.0829476 

– 
202.800 

1.900 
1.500 

1975.200 
46.800 
33.300 

108.500 
1465.800 
7059.000 
9000.100 

0.383 
14.500 

(Some of the approximation and series such as Doyle, Sestak and Coats-
Redfern approximations, keeping away from value of ln p(x) calculated for 
x = 20 was not included in table-2) from reference 5 

 

RESULTS AND DISCUSSION

Linearization of the p(x) function and new equations

The p(x) function is a function of E and 1/T, i.e., p(x) = f(E,1/T).
According to eqn. 4, since ln p(x) is a logarithm of an exponential function
of temperature, then a plot of ln p(x) vs. 1/T will be linear. Therefore, ln
g(α) must also be a linear function of 1/T. For the correct mechanism, ln
g(α) vs. 1/T should be a straight line. For other incorrect mechanisms this
will not be true. Thus, E and A can be calculated from eqn. 4 in non-
isothermal kinetic studies if g(α) and p(x) are known.

It is a fact that, for linear functions E and 1/T depend on ln p(x), indi-
vidually. Therefore, we have tested their simultaneous dependence on
ln p(x) and found that they are, indeed, as seen in Table-2.

The series given in eqns. (5) and (6) for linearization of p(x) was con-
verted to

-ln p(x) = Ax + B ln x + C
A set of linear equations was formed for different values of x (5,20,100)

and it was solved analytically. Hence, the following equations for p(x)
were obtained.

For the first series solution
-ln p(x) = 0.57663 + 1.8198 ln x + 1.00272x (7)
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For the second series solution
-ln p(x) = 2.63145 + 1.0282 ln x + 1.01855x (8)

Substituting in eqn. 4 the above equations for ln p(x)

1.00272xxln1.81980.57663)
Rβ
AE

(ln)αg(ln −−−= (9)

x01855.1xln1.028263145.2)
Rβ
AE

(ln)αg(ln −−−= (10)

Substituting x = E/RT and R = 8.314 J mol-1 K-1 in eqns. 9 and 10,
yields the final forms of the kinetic equations.

T

E
1206.0Eln8198.12776.3)

βR

AE
ln()

T

)α(g
ln(

8198.1
−−+= (11)

T

E
1225.0Eln0282.18091.4)

βR

AE
ln()

T

)α(g
ln(

0282.1
−−+= (12)

The plot of left-hand side of eqns. 11 or 12 vs. reciprocal absolute
temperature will give linear curves. From here, E and A can be calculated
from the slope and intercept, respectively. Eqns. 11 and 12 are similar to
the equations proposed by Madhusudanan et al.5, Coats and Redfern6 and
MacCallum and Tanner7, which are in the form of

)T/E(cElncc]βR/AEln[]T/)α(gln[ c ′′′−′′−′+=′′

Proving the proposed equations using the theoretical data

The proposed equations were tested by theoretical and experimental
thermogravimetric data. A theoretical TG curve was generated for activa-
tion energy, Arrhenius pre-exponential factor and heating rate that are 100
kJ mol-1, 1.1010 s-1 and 10 ºC min-1, respectively. A first-order kinetic equa-
tion is formed from eqns. 11 and 12. The above values of E, A and β were
substituted in these equations to obtain α-T values. Using these values,
activation energies E, correlation coefficients r, were calculated by com-
puter according to eqns. 11 and 12, Coats and Redfern method6 and series
and approximation given by Madhusudanan et al.5 and the results were
compared.

The deviations of E from the theoretical value (100 kJ mol-1) are 0.001,
0.303, 0.344 and 0.648 % for first series, Madhusudanan et al.5 (three-term
approximation), Madhusudanan et al.5 (series) and Coats-Redfern6, respec-
tively and 0.008, 0.667, 2.758 and 3.066 % for the second series,
Madhusudanan et al.5 (three-term approximation), Madhusudanan et al.5

(series) and Coats-Redfern6, respectively.
As seen in Table-3, the two series were proposed, especially the first

one which give E values much closer to the theoretical data than other two
equations (Madhusudanan et al.5 and Coats-Redfern6). The correlation
coefficients of plots, being 0.9999999999999984 and 0.9999999999999949,
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respectively and indicating perfect linear fits, support the fact above. There-
fore, the proposed series can be used to obtain the kinetic parameters of
solid state decomposition reactions.

TABLE-3 
COMPARISON OF ACTIVATION ENERGY AND CORRELATION 

COEFFICIENTS FROM THEORETICAL TG DATA 

Equations E  
(kJ mol-1) 

r 
% Deviation 

from theoretical 
E* 

First series 99.999† 0.9999999999999984 0.001 
Second series 100.008‡ 0.9999999999999949 0.008 

99.697† 0.9999998400000000 0.303 Madhusudanan et al.5 
(approximation)  99.333‡ 0.9999830000000000 0.667 

99.656† 0.9999997400000000 0.344 Madhusudanan et al.5 
(series) 97.242‡ 0.9999810000000000 2.758 
Coats-Redfern6 99.352† 0.9999980000000000 0.648 
 96.934‡ 0.9999700000000000 3.066 
*Theoretical value of E = 100 kJ mol-1. 
†E values computed using temperature generated from the first series. 
‡E values computed using temperature generated from the second series. 

TABLE-4 
KINETIC PARAMETERS FROM EXPERIMENTAL TG DATA FOR 

THE THERMAL DECOMPOSITION OF Ca2C2O4·H2O 
(E in kJ mol-1 and A in s-1) 

Reaction I 
Kinetic equations 

E A r 
First series 111.99 4.68 × 1010 0.99924 
Second series 113.10 3.21 × 1010 0.99924 
Madhusudanan et al.5 (approximation) 111.80 5.34 × 1010 0.99923 
Madhusudanan et al.5 (series) 111.87 7.20 × 1010 0.99924 
Coats-Redfern6 111.62 9.18 × 1010 0.99923 
 Reaction II 

First series 287.20 2.47 × 1017 0.98998 
Second series 290.37 1.31 × 1017 0.98883 
Madhusudanan et al.5 (approximation) 286.69 2.65 × 1017 0.98878 
Madhusudanan et al.5 (series) 294.74 1.50 × 1018 0.98948 
Coats-Redfern6 286.20 5.13 × 1017 0.98868 
 Reaction III 

First series 297.34 1.07 × 1013 0.99161 
Second series 299.22 2.80 × 1012 0.99126 
Madhusudanan et al.5 (approximation) 297.00 1.05 × 1013 0.99125 
Madhusudanan et al.5 (series) 297.03 1.08 × 1013 0.99125 
Coats-Redfern6 296.64 9.57 × 1012 0.99121 
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Application of the proposed equations
In order to test the proposed equations, the kinetic parameters from

TG data for the decomposition of calcium oxalate monohydrate were
derived and the new kinetic equations, eqns 11 and 12, have been applied
successfully to the thermal decomposition of Ca2C2O4·H2O. It is well known
that calcium oxalate monohydrate decomposes thermally in three stages
and the mechanism of decomposition reactions assumed as first order. The
activation energy values for each stage as derived from the corresponding
TG data are listed in Table-4. The obtained values are compared with the
activation energy values derived by other authors5,8,9.

The results obtained from theoretical and experimental TG data show
that the proposed equations are equal or better in comparison to the two
integral methods, Madhusudanan et al.5 (three term approximation and
series) and Coats-Redfern6.
Conclusion

We introduce two new series approximation for the computation of the
Arrhenius temperature integral, p(x) and suggest two corresponding
kinetic equations of the form )T/E(cElncc]Rβ/AEln[]T/)α(gln[ c ′′′−′′−′+=′′

for the evaluation of apparent kinetic parameters from non-isothermal
experiments. Series given in eqns. 5 and 6 was tested with reference to the
Schlömilch series, the series that gives closest agreement to the numeri-
cally integrated values. The proposed equations (eqn. 11 and 12) were tested
by theoretical and experimental thermogravimetric data. The kinetic
parameters calculated using eqns. 11 and 12 and with the Coats-Redfern6

and Madhusudanan et al.5 equations are given in Table-4. The same good
agreement as is observed in the case of the theoretical TG data is show.
The correlation coefficient of plot for eqn. 11 has been found much better
than other two equations. The proposed kinetic equations are in well agree-
ment with the known methods for kinetic analysis of non-isothermal
thermogravimetry.
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