Ring-Opening Products of 1-Phenyltricyclo[4.1.0.0 ${ }^{2,7}$]heptane and 2-Phenyltricyclo[4.1.0.0 ${ }^{2,7}$]heptane in SiO_{2}

Yakup Budak*, Esra Findik, M. Burcu Gürdere and Mustafa Ceylan
Department of Chemistry, Gaziosmanpasa University, Tokat 60250, Turkey Tel: (90)(356)2521616; E-mail: ybudak@gop.edu.tr

Treatment of the mixture of 1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane (8) and 2-phenyltricyclo[4.1.0.0 ${ }^{2,7}$]heptane ($\mathbf{1 5}$) with SiO_{2} gave the ring-opening products i.e., 2-phenylbicyclo-[4.1.0]hept-2-ene (19), 1-phenylbicyclo[4.1.0]hept-2-ene (20), (1E,4Z)-2-phenylcyclohepta-1,4-diene (21), (E)-3-phenylcyclohept-3-en-1-ol (22) and 1-phenylbicyclo[4.1.0]-heptan-2-ol (23). In addition to these products, phenyl (1-phenylbicyclo[4.1.0]heptan-2-yl)sulfane (18) and (Z)-phenyl(2-phenylcyclohept-3-enyl)sulfane (17) were obtained by the addition of PhSH to the mixture of $\mathbf{8}$ and $\mathbf{1 5}$. The addition of bromine to the mixture of $\mathbf{8}$ and $\mathbf{1 5}$ gave 2-bromomethylbiphenyl as the main product.

Key Words: Ring-opening reaction, 1-Phenyltricyclo[4.1.0.0 ${ }^{2,7}$]heptane, 2-Phenyltricycle[4.1.0.0 ${ }^{2,7}$]heptane, SiO_{2}.

INTRODUCTION

The bicyclo[1.1.0]butane ring system, with its strain energy of over 60 $\mathrm{kcal} / \mathrm{mol}^{1,2}$, has been the subject of theoretical and experimental investigations. Mechanistic aspects of thermal ${ }^{3}$, cationic ${ }^{4}$ or metal-promoted ${ }^{5}$ isomerization of bicyclobutane ring are well established. Of particular interest have been studies of the ring opening to 1,3 -butadienes. When the ring opening of bicyclo[1.1.0]butane $\mathbf{1}$ to 1,3-butadiene $\mathbf{2}$ is carried out thermally, the central bond remains intact while two opposite peripheral C-C bonds are broken in formation of the product ${ }^{6-8}$.

Similarly, acid-catalyzed ring-opening reactions of tricyclo[4.1.0.0 ${ }^{2,7}$]heptane (3) system has been investigated by Wiberg and Szeimies ${ }^{9}$. They reported that the norcarane $(\mathbf{4}, \mathbf{5})$ and homoallylstructures $(6,7)$ were occured from the reaction of tricyclo[4.1.0.0 $0^{2,7}$ heptane (3) with H^{+}in ROH .

Fujita et al..10 obtained the ring-opening products (1,3-dienes) $\mathbf{9}$ and $\mathbf{1 0}$ from the rearrangement of 1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane $(\mathbf{8})$ at $450{ }^{\circ} \mathrm{C}$.

In this paper, we report the ring-opening products of 1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane (8) and 2- phenyltricycle[4.1.0.0 $0^{2,7}$]heptane (15) in SiO_{2}. In addition of these reactions, the addition of PhSH and Br_{2} to 1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane (8) and 2-phenyltricycle[4.1.0.0. ${ }^{2,7}$]heptane (15) were also investigated.

EXPERIMENTAL

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Varian 200 and Varian Mercury 400 instruments. As internal standards served TMS ($\delta 0.00$) for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(\delta 77.0)$ for ${ }^{13} \mathrm{C}$ NMR spectroscopy, J values are given in Hz. IR spectra were recorded on a Jasco FT/IR-430 spectrometer. Elemental analyses were obtained from a LECO CHNS 932 Elemental Analyzer. All column chromatographies were performed on silica gel (60230 mesh, Merck).

Reaction of 7,7-dibromo-1-phenylbicyclo[4.1.0]heptane (14) with \boldsymbol{n}-BuLi: To a stirred solution of $\mathbf{1 4}(4 \mathrm{~g}, 12,1 \mathrm{mmol})$ in 50 mL of n-hexane was added $n-\mathrm{BuLi}(9 \mathrm{~mL}, 12.2 \mathrm{mmol})$ and stirred at room temparature for 3 h . The mixture was washed with water $(100 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated and the residue $(1.76 \mathrm{~g})$ was chromatographed on silica gel with n-hexane/ $\mathrm{CHCl}_{3}(8: 2)$ as the eluent. The first fraction was unidentified product (350 mg). Second fraction was 1-phenylbicyclo-[4.1.0]hept-2-ene (19) ${ }^{11}$ ($85 \mathrm{mg}, 5 \%$). Third fraction was 2-phenylbicyclo-[4.1.0]hept-2-ene (20) $)^{12}(250 \mathrm{mg}, 14 \%)$. The fourth fraction was (1E,4Z)-2-phenylcyclohepta-1,4-diene (21) ($145 \mathrm{mg}, 8 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.09(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic H1), 5.73-5.69 (m, 2H, olefinic H4, H5), 3.29-3.28 (m, 2H), 2.51-2.46 (m, 2H), 2.28-2.23 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.98,131.29,128.98$,
128.59, 127.40, 127.04, 126.69, 126.00, 30.98, 29.94, 26.44. IR ($\left.\mathrm{CCl}_{4}\right)$ 3054, 2923, 2852, 1652, 1635, 1558, 1488, 1459, 755, $698 \mathrm{~cm}^{-1}$. Anal. calcd. (\%) for $\mathrm{C}_{13} \mathrm{H}_{14}: \mathrm{C}, 91.71 ; \mathrm{H}, 8.29$. Found (\%): C, 91.58; H, 8.48. The fifth fraction was (E)-3-phenylcyclohept-3-en-1-ol (22) ($250 \mathrm{mg}, 13 \%$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.33-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.27-7.24(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.17(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 3.81 (ddt as "t", $J=8.9,3.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H1}$), 2.87 (dd, $J=14.5,9.2 \mathrm{~Hz}$, A part of AB system, $1 \mathrm{H}, \mathrm{H} 2$), 2.78 ($\mathrm{dt}, J=14.5,1.8 \mathrm{~Hz}$, B part of AB system, 1 H , H2), 2.25-2.19 (m, 2H) 2.12-2.06 (m, 1H), 1.84-1.77 (m, 1H), 1.76-1.64 $(\mathrm{m}, 1 \mathrm{H}), 1.60$ (broad s, $1 \mathrm{H},-\mathrm{OH}), 1.48-1.43(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=144.34,138.84,131.98,128.25,126.62,125.87,68.44,41.31$, $41.15,28.17,23.34$. IR $\left(\mathrm{CHCl}_{3}\right) 3380,3073,3027,2921,2836,1596,1457$, 1440, 1307, 1029, 852, 755, $698 \mathrm{~cm}^{-1}$. Anal. calcd. (\%) for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}: \mathrm{C}$, $82.94 ;$ H, 8.57. Found (\%): C, $82.96 ;$ H, 8.48. Sixth fraction was 1-phenyl-bicyclo[4.1.0]heptan-2-ol (23) ($350 \mathrm{mg}, 18 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.42-7.35$ (m, 2H, ArH), 7.33-7.29 (m, 2H, ArH), 7.25-7.19 (m, 1H, ArH), 4.24-4.20 (dd, $J=9.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.18-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.62-$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.39$ (br s, 1H, -OH), 1.32-1.06 (m, 2H), $0.76-0.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=146.44,129.61,128.61$, $128.45,72.96,30.08,23.72,22.88,21.61,18.96,15.36$. IR $\left(\mathrm{CHCl}_{3}\right) 3370$, 3054, 3018, 2927, 2852, 1490, 1444, 1307, 1068, 927, 790, $750 \mathrm{~cm}^{-1}$. Anal. calcd. (\%) for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 82.94 ; \mathrm{H}, 8.57$. Found (\%): C, 82.92; H, 8.68.

Reaction of the mixture $\mathbf{8}$ and $\mathbf{1 5}$ with $\mathbf{P h S H}$: To the mixture of $\mathbf{8}$ and $\mathbf{1 5}(1 \mathrm{~g}, 6 \mathrm{mmol})$ was added thiophenol $(0.6 \mathrm{~mL}, 6 \mathrm{mmol})$ and stirred at room temperature for 2 h . The reaction mixture was washed with a solution of NaHCO_{3} and water and dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuum. The crude product was submitted on a silica gel column and eluted with n-hexane/ $\mathrm{CHCl}_{3}(7: 3)$. The first fraction was phenyl(1 -phenyl-bicyclo[4.1.0]heptan-2-yl)sulfane (18) ($430 \mathrm{mg}, 27 \%$). ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.41-7.19(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 4.03-3.94(\mathrm{dd}, J=6.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.28-2.16 (m, 2H), 1.96-1.83 (m, 3H), 1.62-1.59. (m, 2H), 1.33-1.31 (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=145.44,135.24,133.63,130.61,129.65$, 129.06, 128.48, $126.0452 .66,42.44,30.08,23.72,20.41,16.76,14.38$. IR $\left(\mathrm{CCl}_{4}\right) 3033,3018,2933,2862,1540,1506,1444,1263,1178,1083,1022$, $786,761,696 \mathrm{~cm}^{-1}$. Anal. calcd. (\%) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~S}: \mathrm{C}, 81.38 ; \mathrm{H}, 7.99 ; \mathrm{S}$, 11.43. Found (\%): C, 81.58; H, 7.74; S, 11.58.

The second fraction was (Z)-phenyl(2-phenylcyclohept-3-enyl)sulfane (17) ($300 \mathrm{mg}, 19 \%$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.06-8.01(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.67-7.49 (m, 8H, ArH), 6.06-5.96 (m, 1H, olefinic), 5.84-5.76 (m, 1 H , olefinic), 4.16-4.13 (m, 1H), 2.18-2.06 (m, 1H), 2.04-1.61 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=146.44,134.24,132.63,129.61,128.61$, 128.56, 128.45, 127.04, 49.96, 41.38, 33.72, 32.88, 28.61, 26.66, 23.36. IR
$\left(\mathrm{CCl}_{4}\right) 3079,3054,3023,2938,2857,1581,1475,1440,1087,1022,786$, $755,700 \mathrm{~cm}^{-1}$. Anal. calcd. (\%) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~S}: \mathrm{C}, 81.38 ; \mathrm{H}, 7.99 ; \mathrm{S}, 11.43$. Found (\%): C, 81.08; H, 7.69; S, 11.63.

Reaction of the mixture 8 and 15 with $\mathbf{P h S H}$ with Br_{2} : To the mixture of $\mathbf{8}$ and $\mathbf{1 5}(1 \mathrm{~g}, 6 \mathrm{mmol})$ was added bromine $(0.3 \mathrm{~mL})$ and stirred at room temperature for 0.5 h . The reaction mixture was washed with a solution of NaHCO_{3} and water and dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuum. The crude product was submitted on a silica gel column and eluted with n-hexane. The 2-bromomethylbiphenyl was isolated as the main product in yield of 22%. (0.32 g , colourless crystal, m.p. $\left.45-46^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.69-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.58-7.36(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{ArH}), 4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=142.64,141.92$, $139.72,136.32,131.23,130.45,129.10,128.38,127.54,124.68,51.19$. IR $\left(\mathrm{CHCl}_{3}\right) 3358,3029,2948,2917,2848$ 1594, 1479, 1440, 1213, 755, 696 cm^{-1}. Anal. calcd. (\%) for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br}: \mathrm{C}, 63.18 ; \mathrm{H}, 4.49$. Found (\%): C, 63.38; H, 4.29.

RESULTS AND DISCUSSION

The known starting material 14 was synthesized according to previous reported procedure ${ }^{13}$. Bromobenzene was coverted to the Grignard reagent, which was condensed with cyclohexanone (11). Dehydration of the alcohol $\mathbf{1 7}$ with p - TsOH in benzene gave 1-phenylcyclohexene (13) in 86% overal yield. Dibromocarbene addition to alkene 13 gave the 7,7-dibromo-1-phenylbicyclo[4.1.0]heptane (14) (Scheme-I). In this reaction, when less than 2 equiv. of CHBr_{3} and KOtBu were employed, alkene was not consumed completely.

Scheme-I
The treatment of dibromocyclopropane $\mathbf{1 4}$ with n - BuLi in n-hexane at room temperature afforded the two insertion products i.e., 1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane (8) and 2-phenyltricyclo[4.1.0.0. ${ }^{2,7}$]heptane (15) in total yield of 85% (Scheme-II). The same products were obtained by Stangl et al. ${ }^{11}$ using the similar method in ratio of 13:1, respectively.

The structures of $\mathbf{8}$ and $\mathbf{1 5}$ were determined on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and compared with their published data ${ }^{11}$.

Scheme-II

After the successful synthesis and characterization of $\mathbf{8}$ and 15, the mixture was submitted to on a silica gel column and eluted n-hexane then n-hexane $/ \mathrm{CHCl}_{3}$. After the column repeated chromatographed, five products 19-23 could be isolated (Scheme-III).

Scheme-III

The structures of norcarane derivatives $\mathbf{1 9}$ and $\mathbf{2 0}$ were determined on the basis of spectral data and comparison with their published data. The norcarene derivative $\mathbf{2 0}$ was previously synthesized in quantitative yield by the reaction of a trace amount of $\mathrm{BF}_{3}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ with of 1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane ${ }^{10}$ and the reaction of 6-phenylbicyclo[3.2.0]hept-6-ol with $p-\mathrm{TsOH}^{12}$. Additon, the norcarene derivative 19 was already obtained by Stangl et al. ${ }^{11}$ from the rearrangement of 1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane (8) in SiO_{2}.

Formation of the compounds 20 and 23 can be explained as shown in Scheme-IV. We assume that the cation 24 is formed by the action of SiO_{2} to1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane (8). Elimination of H^{+}ion from 24 gives alkene norcarene 20 and extracted of 24 by $\mathrm{H}_{2} \mathrm{O}$ yields alcohol 23 (Scheme-IV).

The structures of compounds 21-23 were determined on basis of spectral data. All spectral findings are in good agreement with purposed structures.

Scheme-IV

The formation of compounds 21 and 22 can be explained as shown in Scheme-V. The norcarene cation 25 is formed by the action of SiO_{2} to 2-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane (15). The cation $\mathbf{2 5}$ converts to norcarene derivative 19 by the elimination of H^{+}ion. Then, compound 19 converts to cationic intermediate 26 with ring-opening rearrangement. While the addition of $\mathrm{H}_{2} \mathrm{O}$ to 26 gives alcohol 22, elimination of H^{+}ion from 26 yields 1,4-diene 21 (Scheme-V).

Addition, to mixture of $\mathbf{8}$ and $\mathbf{1 5}$ was added thiophenol (PhSH) and the reaction mixtutre was submitted on a silica gel column. After the column chromatographed, two PhSH addition products 17 and 18 could be isolated (Scheme-III).

The structural assignment of $\mathbf{1 8}$ was carried out by the comparison of its NMR spectra with that of the parent compound 23.

The formation mechanism of $\mathbf{1 7}$ and $\mathbf{1 8}$ were account for as shown in Scheme-VI. The norcarene $\mathbf{1 8}$ is formed by the similar mechanism that of 23.

Scheme-VI

In last, in mixture of $\mathbf{8}$ and $\mathbf{1 5}$, molecular bromine was added in CCl_{4} at $0^{\circ} \mathrm{C}$. The mixture of brominated products was submitted on a silica gel column and 2-bromomethylbiphenyl $\mathbf{1 6}$ was isolated as the main product (Scheme-III). The others products were not isolated.

Conclusion

Treatment of the mixture of 1-phenyltricyclo[4.1.0.0 $0^{2,7}$]heptane (8) and 2- phenyltricyclo-[4.1.0.0 $0^{2,7}$]heptane (15) with SiO_{2} gave the ring-opening products i.e., 1-phenylbicyclo[4.1.0]-hept-2-ene (19), 2-phenylbicyclo-[4.1.0]hept-2-ene (20), (1E,4Z)-2-phenylcyclo-hepta-1,4-diene (21), (E)-3-phenylcyclohept-3-en-1-ol (22) and 1-phenylbicyclo[4.1.0]heptan-2-ol (23). Addition, phenyl(1-phenylbicyclo[4.1.0]heptan-2-yl)sulfane (18) and (Z)-phenyl(2-phenyl-cyclohept-3-enyl)sulfane (17) were obtained by the addition of PhSH to the mixture of $\mathbf{8}$ and $\mathbf{1 5}$. Addition of Br_{2} to the mixture of $\mathbf{8}$ and $\mathbf{1 5}$ gave 2-bromomethylbiphenyl as the main product.

ACKNOWLEDGEMENTS

The authors are indebted to the Gaziosmanpasa University (Grant BAP-2003-39) for financial support of this work. Furtermore, thanks are also due to Dr. Cavit Kazaz (Atatürk Üniversity) for NMR spectrum.

REFERENCES

1. B.S. Philip and L.M. Michael, J. Am. Chem. Soc., 110, 1666 (1988).
2. K.B. Wiberg, Angew. Chem., Int. Ed. Engl., 25, 312 (1986).
3. K.B. Wiberg and G. Szeimies, Tetrahedron Lett., 1235 (1968).
4. W.R. Moor and B.J. King, J. Org. Chem., 36, 1882 (1972).
5. L.A. Paquette and G. Zon, J. Am. Chem. Soc., 96, 224 (1974).
6. E.P. Blanchard Jr. and A. Cairncross, J. Am. Chem. Soc., 88, 487 (1966).
7. G.L. Closs and P.E. Pfeffer, J. Am. Chem. Soc., 90, 2452 (1968).
8. K.B. Wiberg and J.M. Lavanish, J. Am. Chem. Soc., 88, 5272 (1966).
9. K.B. Wiberg and G. Szeimies, J. Am. Chem. Soc., 92, 571 (1970).
10. K. Fujita, T. Nakamura and T. Shono, Tetrahedron Lett., 29, 2441 (1975).
11. R. Stangl, H.J. Fink and M. Christl, Chem. Ber., 125, 479 (1992).
12. F. Algi and M. Balci, Arkivoc, 10, 173 (2006).
13. M. Ceylan, Y. Budak and M.B. Gürdere, Turk. J. Chem., 30, 635 (2006).
