Asian Journal of Chemistry

Electrical, Thermal Parameter Calculations of Artificially Removed Human Renal Stones by Two-Probes Method

P. SUNDARAMOORTHI*, S. KALAINATHAN[†], G. KANCHANA[‡] and R. SANTHI Department of Physics, Mahendra Engineering College Mallasamudram, Namakkal-637 503, India E-mail: sundara78@rediffmail.com

> Electrical, thermal conductivity studies play a vital role in the field of science and technology. According to the conductivity terms, the world materials can be classified in to good conductors, bad conductors, semiconductors and super conductors. As per the free electron theory, the free electron only acts as carrier and carries their energy from one point to another point either natural or forced. In the present investigation, five renal stones were collected from the poor hard working males who are affected with mineral deposition in the urinary tracts. The stones were collected from the hospital by lithotropic treatment process. Using two-probes method, the electrical conductivity was measured at different temperatures. The thermal conductivity and temperature coefficients were calculated.

Key Words: Electrical, Thermal, Human renal stones.

INTRODUCTION

The conductivity of many biomaterial have been reported¹. The problems, such as thrombogenesis and enzymatic activity of cytochrome oxides, have been dealt with either semi conductivity or electrets behaviour of different biomaterials. In the present study, these aspects have been attempted on the same materials, namely renal stones or renal calculi. The study of electrets behaviour and conductivity becomes essential in order to find an inhibitor for renal stones or present its growth. The electrets behaviour of the renal stone material through temperature dependent sex determination (TSD) and temperature sensitive period (TSP)²⁻⁴. Herein, this work reports the d.c conductivity of kidney stones as a function of temperature and applied electric field.

[†]Department of Physics, Vellore Institute of Technology, Vellore-632 014, India.

[‡]Deaprtment of Biochemistry, Muthayammal College of Arts and Science, Rasipuram-637 408, India.

Asian J. Chem.

EXPERIMENTAL

Kidney stones were removed from the affected patients by lithotropic process in the Rasi Stones Diagnosing Center in Rasipuram, Namakkal, India and used in the present investigations. These stones constituents were analyzed by biochemical analysis process. The stone constituents are reported in the Table-1. The major constituents of the samples are calcium phosphate and/or oxalate ions bond to an organic and sulponated musco-proteins⁵. The investigation results on TSP and TSD were reproducible from sample to sample of stone. However, it varied slightly from stone to stone depending upon either oxalate contents or phosphate contents. Due to the lengthy process of conductivity measurement, five samples only used.

TABLE-1
CHEMICAL COMPOSITION PRESENT IN THE RENAL STONES

Stones	Chemical constituents
А	Calcium oxalate dihydrate, calcium phosphate.
В	Calcium oxalate monohydrate, calcium oxalate dihydrate.
С	Calcium oxalate monohydrate, phosphates.
D	Calcium oxalate monohydrate, phosphate, calcium oxalate dihydrate
Е	Calcium oxalate monohydrate

Stone samples were prepared for conductivity measurement. Initially the bloodstains and other impurities were removed from the surfaces of the sample and dried naturally. Then the sample surfaces were smoothened by using very thin grain grinder. The renal stone samples were placed in between two aluminum probes with deep contact. The sample holder with the sample was kept inside the micro oven, which is automatic heater with electronic temperature monitor and controller (the accuracy is ± 2 °C). The d.c conductivity was studied at a temperature from 295 to 373K at a certain temperature intervals. The electric field applied to the probes starts from 1 to 20 V and corresponding currents were measured. All the samples were kept at a particular temperature at least for 15 min to reach the saturation. Then the measurements were started. At higher voltage and higher temperature the current settling time were observed which is less. The transient current of the sample mainly depends upon the presence of carriers in a sample according to the Curie-Von-Schweidlar law. The conductivity of polymer samples has been reported⁶⁻⁸ and ionic materials^{9,10}.

RESULTS AND DISCUSSION

The approximate area of each samples were measured by using graph sheet. The temperatures are varied from 295 to 373 K. The applied voltage (V), corresponding current measurements (I), resistance (R), resistivity (ρ), conductivity (σ) and current density (J) of each sample at a particular temperature were reported in the Tables 2-6.

TABLE-2a

Temperature = 30 °C; A = 152×10^{-6} m ² , L = 10×10^{-3} m					
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)	
4	4.0	1.000	6.5789	0.026	
5	4.0	1.250	8.2236	0.026	
6	5.0	1.200	7.8947	0.033	
7	6.5	1.076	7.0789	0.039	
8	7.0	1.142	7.5131	0.046	
9	8.0	1.125	7.4013	0.053	
10	8.0	1.250	8.2236	0.053	

 $R = 1.149 \times 10^6$; $\rho = 7.5591 \times 10^7$; J = 0.0409

Coefficient of electrical conductivity (σ) = 1.328 × 10⁸ mho m⁻¹

rein		$c, n = 152 \times 10$	$\mathbf{m}, \mathbf{L} = 10 \times 10$	
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)
4	3	1.330	8.7670	0.021
5	3	1.660	10.9650	0.021
6	4	1.500	9.8684	0.026
7	5	1.400	9.2105	0.032
8	6	1.333	8.7697	0.039
9	7	1.285	8.4539	0.046
10	7	1.428	9.3947	0.046

TABLE-2b
Temperature = 60 °C; A = 152×10^{-6} m ² , L = 10×10^{-3} m

 $R = 1.4207 \times 10^6$; $\rho = 9.3469 \times 10^7$; J = 0.033

Coefficient of electrical conductivity (σ) = 1.0398 × 10⁻⁸ mho m⁻¹

We are unable to measure the hall coefficient of the renal stones. The stones containing collagan like micro-protein and apatite, have also some organic matrix like protein at 5 % of the total weight¹¹. The protein matrix is clearly visible under a scanning micro. The d.c electrical conductivity of the renal stones was compared and calculated with the standard ionic conductors¹² and semiconductors¹³.

10

Asian J. Chem.

Temp	erature = 96 %	C; $A = 152 \times 10$	$m, L = 10 \times 10$	m
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)
4	2	2.000	13.1578	0.013
5	2	2.500	16.4473	0.013
6	3	2.000	13.1578	0.019
7	3	2.333	15.3486	0.019
8	3	2.666	17.5394	0.026
9	4	2.250	14.8026	0.026
10	4	2.500	16.4473	0.026

TABLE-2c C: $A = 152 \times 10^{-6} \text{ m}^2 \text{ J} = 10 \times 10^{-3}$ m

 $R = 1.149 \times 10^{6}; \rho = 15.2715 \times 10^{7}; J = 0.202$ Coefficient of electrical conductivity (σ) = 6.548 × 10⁹ mho m⁻¹

TABLE-3a Temperature = 28 °C; A = 33×10^{-6} m ² , L = 6×10^{-3} m					
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)	
3	100	0.0300	5.4545	3.03	
4	110	0.0364	6.4182	3.33	
5	120	0.0417	7.5818	3.63	
6	140	0.0429	7.8000	4.24	
7	150	0.0467	8.4909	4.54	
8	165	0.0485	8.8182	5.10	
9	175	0.0514	9.3454	5.30	

 $\begin{array}{c|c} 0.0556 & 10.1090 & 5.45 \\ \hline R = 1.149 \times 10^6; \ \rho = 8.02725 \times 10^7; \ J = 4.2525 \end{array}$

Coefficient of electrical conductivity (σ) = 1.2457 × 10⁻⁷ mho m⁻¹

180

TABLE-3b Temperature = 58 °C; A = 33×10^{-6} m ² , L = 6×10^{-3} m					
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)	
4	3	1.3330	2.9556	0.1330	
6	5	1.2000	2.6667	0.2220	
8	6	1.3330	2.9556	0.2660	
10	8	1.2500	2.7778	0.3550	
12	9	1.3330	2.6667	0.4000	
14	11	1.2720	2.8267	0.4890	
16	15	1.0667	2.3704	0.6690	
18	19	0.9474	2.1053	0.8440	
20	22	0.9090	2.0200	0.9780	

 $R = 1.1826 \times 10^{6}; \rho = 2.5938 \times 10^{6}; J = 0.848$ Coefficient of electrical conductivity (σ) = 3.855 × 10⁹ mho m⁻¹

Parameter Calculations of Human Renal Stones 1715

Ten	iperature = 65	$C; A = 33 \times 10$	$m, L = 6 \times 10$	m
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)
2	40	0.0500	9.0909	1.12
3	70	0.0429	7.8600	2.12
4	80	0.0500	9.0909	2.42
5	85	0.0589	10.7690	2.57
6	100	0.0600	10.9090	303
7	118	0.0590	10.7272	3.57
8	130	0.0615	11.1818	3.93
9	140	0.0642	11.6727	4.42
10	150	0.0667	12.1272	4.45

TABLE-3c Temperature = 65 °C: A = 33×10^{-6} m². L = 6×10^{-3} m

 $R = 0.05702 \times 10^6$; $\rho = 10.3676 \times 10^6$; J = 3.07

Coefficient of electrical conductivity (σ) = 9.645 × 10⁻⁸ mho m⁻¹

Temperature = 98 °C; $A = 33 \times 10^{-6} \text{ m}^2$, $L = 6 \times 10^{-3} \text{ m}^2$					
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)	
2	25	0.1000	1.8182	0.75	
3	35	0.0857	1.5582	1.06	
4	50	0.0800	1.4545	1.51	
5	60	0.0833	1.5145	1.18	
6	65	0.0923	1.6782	1.96	
7	75	0.0933	1.6964	2.27	
8	90	0.0889	1.6164	2.73	
9	100	0.0900	1.6364	3.63	
10	120	0.0833	1.5145	3.64	
D 0.0005 \cdot 10 ⁶ \cdot 1.007 \cdot 10 ⁶ J 2.007					

TABLE-3d

 $R = 0.0885 \times 10^6; \rho = 1.6097 \times 10^6; J = 2.087$ Coefficient of electrical conductivity (σ) = 6.212 × 10⁻⁸ mho m⁻¹

The ionic conduction for the renal stone is

$$\sigma = \sigma_1 exp^{(A/KT)} + \sigma_2 exp^{(-B/KT)}$$

where σ_1 , σ_2 are the zero field conductivity, A and B are constants. The two exponential terms are nature of normal conductors.

In semiconductors the conductivity

 $\sigma = \sigma_0 exp^{(-Eg/2KT)}$

here σ_0 is the zero field conductivity and E_g is the activation energy of the conductors at a particular temperature (T). From the observation a fine powder of kidney stone also shows fibrils of protein under a high resolution optical microscope.

16

18

20

Asian J. Chem.

Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)
5	0.400	8.8890	0.221
7	0.571	12.6889	0.311
10	0.600	13.3330	0.444
12	0.667	14.8222	0.533
15	0.667	14.8222	0.666
17	0.706	15.6889	0.755
20	0.700	15.5516	0.889
22	0.727	16.1556	0.978
25	0.800	17.7778	1.111
	Current (µA) 5 7 10 12 15 17 20 22 25	$\begin{array}{c} \text{Current} \\ (\mu \text{A}) \end{array} \begin{array}{c} \text{Resistance} \\ 10^6 (\Omega) \end{array} \\ \\ 5 \\ 0.400 \\ 7 \\ 0.571 \\ 10 \\ 0.600 \\ 12 \\ 0.667 \\ 15 \\ 0.667 \\ 15 \\ 0.706 \\ 20 \\ 0.700 \\ 22 \\ 0.727 \\ 25 \\ 0.800 \end{array}$	$\begin{array}{c} \mbox{Current} \\ (\mu A) \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$

TABLE-4a Temperature = 30 °C: A = 22.5×10^{-6} m². L = 5×10^{-3} m

 $R = 0.6486 \times 10^6$; $\rho = 14.4151 \times 10^6$; J = 0.6569

Coefficient of electrical conductivity (σ) = 6.937 × 10⁻⁹ mho m⁻¹

		TABLE-4b	6 2 3			
Temperature = 58 °C; A = 33×10^{-6} m ² , L = 6×10^{-3} m						
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10^7 ohm	Current density (amn/m^2)		
4	2	1 2220	<u>Μ(ρ)</u>	(anp/n)		
4	3	1.3330	2.9550	0.133		
6	5	1.2000	2.6667	0.222		
8	6	1.3330	2.9556	0.266		
10	8	1.2500	2.7778	0.355		
12	9	1.3330	2.6667	0.400		
14	11	1.2720	2.8267	0.489		

1.0667

0.9474

0.9090

 $R = 1.1826 \times 10^6$; $\rho = 2.5938 \times 10^6$; J = 0.484

2.3704

2.1053

2.0200

0.669 0.844

0.978

Coefficient of electrical conductivity (σ) = 3.855 × 10⁻⁹ mho m⁻¹

15

19

22

Thus renal stones can be regarded as a mixture of semi conducting materials like N or P type. But it behaves like N type material or conductors. Hence, conductivity of a kidney stone shows a partially compensated semi-conductor.

Available mechanism for conduction of renal stones may be sought with the help of various scattering mechanism of conductors and semiconductors¹⁴. The conductivity of samples depends upon the scattering by lattice vibrations. In conductor the curve between conductivity and temperature should be straight line, but in semiconductor is not in usual¹⁵. The TSP and TSD data of kidney stones also give added information about its conduction mechanism^{2,3}.

Parameter Calculations of Human Renal Stones 1717

$10^{-10} \text{ m}^{-22.5} \times 10^{-10} \text{ m}^{-22$					
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)	
4	2	2.0000	4.4440	0.880	
6	3	3.0000	6.6667	0.133	
8	4	2.0000	4.4444	0.177	
10	6	1.6670	3.7044	0.267	
12	7	1.7142	3.8093	0.311	
14	9	1.5556	3.4569	0.400	
16	13	1.2308	2.6667	0.578	
18	15	1.2000	2.4689	0.667	
20	18	1.1100	2.1268	0.800	

TABLE-4c Temperature = 95 °C: A = 22.5×10^{-6} m². L = 5×10^{-3} m

 $R = 1.7198 \times 10^6$; $\rho = 3.9577 \times 10^6$; J = 0.464

Coefficient of electrical conductivity (σ) = 2.661 × 10⁻⁹ mho m⁻¹

TABLE-5a
Temperature = 28 °C; $A = 20 \times 10^{-6} \text{ m}^2$, $L = 4 \times 10^{-3} \text{ m}$

	-			
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10^7 ohm	Current density
	(1)	10 (11)	Μ(ρ)	(amp/m ⁻)
2	10	0.2000	4.0000	0.50
4	15	0.2667	5.3340	0.75
6	19	0.3157	6.3140	0.95
8	25	0.3200	6.4000	1.25
10	30	0.3330	6.6000	1.50
12	38	0.3157	6.3140	1.90
14	45	0.3110	6.2220	2.25
16	70	0.2286	4.5720	3.50
18	78	0.2308	4.6160	3.90
20	90	0.2220	4.4440	4.50
		D 0 0742 1	LO ⁶ 5 1071	10 ⁷ I 0.040

 $R = 0.2743 \times 10^6$; $\rho = 5.4874 \times 10^7$; J = 2.049

Coefficient of electrical conductivity (σ) = 1.822 × 10⁻⁸ mho m⁻¹

The TSP and TSD conductivity of a sample, changing current is composed of three components, which is conduction, polarization and depolarization. When temperature increases, the conductivity of a samples is increased, the polarization and depolarization peaks merges in the conduction current or only a part of its observable¹⁶. The voltage dependence of conductivity decreases with rise of temperature (T). The current density decrease shows that the conduction is in non-ohmic. This change suggests a warm electron effect¹⁷. At higher temperature, the current density is directly proportional to voltage and gives the ohmic behaviour. It is clear that a sample at higher

Asian J. Chem.

Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)
2	6	0.3330	6.6600	0.30
4	10	0.4000	8.0000	0.50
6	15	0.4000	8.0000	1.10
8	20	0.4000	8.0000	1.30
10	26	0.3847	7.6940	1.60
12	32	0.3750	7.5000	2.00
14	40	0.3500	7.0000	2.60
16	52	0.3077	6.1540	2.70
18	60	0.3000	6.0000	3.00
20	75	0.2667	5.3340	3.75
			6	-

TABLE-5b
Temperature = 70 °C; A = 20×10^{-6} m ² , L = 4×10^{-3} m

 $R = 0.3517 \times 10^6$; $\rho = 7.0342 \times 10^7$; J = 1.885

Coefficient of electrical conductivity (σ) = 1.422 × 10⁸ mho m⁻¹

	-			
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)
2	3	0.6670	1.3334	0.15
4	8	0.5000	1.0000	0.40
6	12	0.5000	1.0000	0.60
8	15	0.5333	1.0666	0.75
10	18	0.5556	1.1112	0.90
12	25	0.4800	0.9600	1.25
14	32	0.4375	0.8750	1.60
16	40	0.4000	0.8000	2.00
18	46	0.3913	0.7826	2.30
20	50	0.4000	0.8000	2.50
			(

TABLE-5c Temperature = 98 °C; A = 20×10^{-6} m², L = 4×10^{-3} m

 $R = 0.4864 \times 10^{6}; \rho = 0.9728 \times 10^{8}; J = 1.246$

Coefficient of electrical conductivity (σ) = 1.0279 × 10⁻⁹ mho m⁻¹

temperature shows that the thermal energy difference between the charge carriers and lattice was relatively low or due to asymmetric effect¹⁸ formed inside the crystals of calcium oxalates and calcium phosphates (major chemical constituent present in the samples).

Parameter Calculations of Human Renal Stones 1719

1	emperature = 20	$C, II = J \times 10$	$III, L = 5 \times 10$	111
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm M (ρ)	Current density (amp/m ²)
2	26	0.07690	2.5633	3.32
4	35	0.11420	3.5067	3.88
6	45	0.12500	4.1667	5.33
8	48	0.12300	4.1000	5.00
10	78	0.12820	4.2733	8.66
12	90	0.13300	4.4433	10.00
14	109	0.31284	5.2800	12.11
16	122	0.13110	4.3700	13.55
18	140	0.12860	4.2867	15.55
20	170	0.11760	3.9200	18.88

TABLE-6a Temperature = 28 °C: $A = 9 \times 10^{-6} \text{ m}^2$. $L = 3 \times 10^{-3} \text{ m}^2$

 $R = 0.1263 \times 10^6$; $\rho = 4.1210 \times 10^7$; J = 9.628

Coefficient of electrical conductivity (σ) = 2.426 × 10⁻⁸ mho m⁻¹

101	nperature – 01	$C, A = 9 \times 10$	$III, L = 5 \times 10$	111
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)
2	15	0.1338	3.7933	1.66
4	25	0.1600	5.3330	2.77
6	30	0.2000	6.6670	3.33
8	38	0.2105	7.0167	4.22
10	50	0.2000	6.6667	5.55
12	57	0.2105	7.0167	6.33
14	65	0.2154	7.1800	7.22
16	74	0.2162	7.2666	8.22
18	82	0.2195	7.3167	9.11
20	100	0.2000	6.6667	11.11
		D 0.10(54 1	06 (10 (2	107 1 5 0 5 2

TABLE-6b Temperature = 65 °C: $A = 9 \times 10^{-6} \text{ m}^2 \text{ L} = 3 \times 10^{-3} \text{ m}$

R = 0.19654×10^6 ; $\rho = 6.4863 \times 10^7$; J = 5.952

Coefficient of electrical conductivity (σ) = 1.542 × 10⁸ mho m⁻¹

Conclusion

At higher temperature, the thermal conductivity of all the samples was constant, but the electrical conductivity varied (Table-7). The investigation result shows that all the stones are positive temperature coefficient materials. The entire sample shows high conductivity at low temperature, but when the temperature increases, the conductivity decreases. The thermal coefficient of all the stones are calculated and recorded.

Asian J. Chem.

Iei	nperature = 77	$C, M = \mathcal{I} \times 10$	$III, L = J \times 10$	111
Voltage (V)	Current (µA)	Resistance $10^6 (\Omega)$	Resistivity in 10 ⁷ ohm Μ (ρ)	Current density (amp/m ²)
2	8	0.2500	8.3330	0.88
4	15	0.2667	8.8900	4.66
5	20	0.2500	8.3333	2.22
6	26	0.2308	7.6933	2.88
7	34	0.2059	6.8633	3.77
8	38	0.2105	7.0167	4.22
9	42	0.2145	7.1433	4.66
10	45	0.2222	7.4000	5.00
11	50	0.2200	7.4000	5.55
12	58	0.2069	6.8967	6.44
13	65	0.2350	7.8333	7.22
14	70	0.2000	6.6667	7.77
15	74	0.2027	6.7567	8.22
16	78	0.2000	6.6667	8.66

TABLE-6c Temperature = 99 °C; $A = 9 \times 10^{-6} \text{ m}^2$, $L = 3 \times 10^{-3} \text{ m}$

 $R = 0.22 \times 10^{6}; \rho = 7.4209 \times 10^{7}; J = 4.399$ Coefficient of electrical conductivity (σ) = 1.3475 × 10⁸ mho m⁻¹

	ELECTRICAL TARAMETERS OF RENAL STONE SAWITERS					
Stones	Temperature (°C)	$R \times 10^6$	ρ (Om)	J (amp/m ²)		
	(-)	(22)	(\$2111)	()		
	30	1.1490	$7.55910 \times 10^{\circ}$	0.0409		
А	60	1.4207	9.34690×10^{7}	0.0330		
	96	1.1490	15.2715×10^{7}	0.0202		
	28	1.14900	8.02725×10^{7}	4.2525		
В	65	0.05702	10.3676×10^{6}	3.0700		
	98	0.08850	1.60970×10^{6}	2.0870		
С	30	0.6486	14.4151×10^{6}	0.6569		
	58	1.1826	2.59380×10^{6}	0.4840		
	95	1.7198	3.95770×10^{6}	0.4640		
D	28	0.2743	5.4874×10^{7}	2.049		
	70	0.3517	7.0342×10^{7}	1.885		
	98	0.4864	0.9728×10^{8}	1.246		
Е	28	0.12063	4.1210×10^{7}	9.628		
	65	0.19654	6.4863×10^{7}	5.952		
	99	0.22000	7.4209×10^{7}	4.399		

TABLE-7a ELECTRICAL PARAMETERS OF RENAL STONE SAMPLES

TABLE-7b THERMAL AND ELECTRICAL CONDUCTIVITY RELATION WITH THE TEMPERATURE LORAZNTS CONSTANT (L) = $2.44 \times 10^{-8} \text{ W}\Omega \text{ K}^{-2}$

Name of the sample	Conductivity (σ) × 10 ⁻⁸	Temperature (°C)	Thermal conductivity $K = \sigma LT \times 10^{-14} W/MK$
	1.3280	30	0.9721
А	1.0698	60	1.5662
	0.6548	96	15.3381
	12.457	28	8.5106
В	9.6450	65	15.2970
	6.2120	98	14.5510
	0.6937	30	0.5077
С	0.3855	58	0.5456
	0.2661	95	6.1682
	1.82200	28	1.2448
D	1.42200	70	2.4288
	0.10279	98	2.4941
	2.4260	28	1.6570
Е	1.5420	65	2.4456
	1.3475	99	3.2550

TABLE-7c TEMPERATURE COEFFICIENT OF THE RENAL STONE AT DIFFERENT TEMPERATURES

Sample	Temperature minimum (°C)	Temperature maximum (°C)	Temperature coefficient of the sample $\alpha = (R_2-R_1)/(R_1T_2-R_2T_1)$
Δ	30	60	0.01032
	30	96	0.02882
В	28	65	0.01010
	28	98	0.02390
C	30	95	0.09122
C	58	95	0.04266
D	28	98	0.01590
D	28	70	0.00827
	28	99	0.01718
E	28	65	0.03642

Asian J. Chem.

REFERENCES

- 1. F.X. Hart, N.J. Berner and R.L. McMillen, Phys. Med. Biol., 44, 413 (1999).
- Ya. Yagyik, I.M. Talwar, N. Lal, K.K. Nagpal and R.K. Jethi, Electrets Studies Kidney Stones, in Proc. Solid State Phys Sym. BARC, Bombay, India, pp. 23-25, 27c, 205 (1984).
- Ya. Yagyik, I.M. Talwar, N. Lal, K.K. Nagpal and R.K. Jethi, Bioelectrets of Renal Calculi (Kidney Stone) in Proc. 5th Int. Sym. Electrets, Heidelberg, pp. 819-824 (1985).
- 4. Ya. Yagyik, I.M. Talwar, N. Lal, K.K. Nagpal and R.K. Jethi, *Biomaterials*, **8**, 503 (1987).
- 5. C.W. Vermeulen, E.S. Lyon, J.E. Ellis and T.A. Borden, J. Urol., 97, 573 (1967).
- 6. J. Lowell, J. Phys. D, 15, 109 (1982).
- 7. I.M. Talwar, et al., Indian J. Pure Appl. Phys., 7, 681 (1982).
- 8. B.J. Sharma and P.K.C. Pillai, Polymer, 23, 17 (1982).
- 9. J. Corish and P.W.M. Jacobs, J. Phys. Chem. Solids, 33, 1799 (1972).
- 10. C. Ramasastry, K.V. Reddy and V.S. Murthy, Proc. Royal Soc. A, 325, 347 (1971).
- 11. A. Vanderzerd, Solid-state Physical Electronics, Printer's Hall of India, New Delhi, p. 492, India (1971).
- R. Pething, Dielectrics & Electronic Properties of Biological Materials, John Wiley & Sons, New York, p. 303 (1979).
- R.K. Jethi, B. Duggal, R.S. Sahota, M. Gupta and I.B. Sofat, *Indian J. Med. Res.*, 78, 422 (1983).
- 14. P.S. Kareev, Semiconductor Physics, Mir Publishers, Moscow, pp. 428-436 (1974).
- 15. P.S. Greeve, Physics and Technology of Semiconductor Devices, John Wiley & Sons, New York, p. 109 (1967).
- 16 S.W.S. Mckeever and D.M. Hughes, J. Phys. D, 8, 1520 (1975).
- J.S. Black more, Solid State Physics, W.B. Sawnders Company Tokyo, Japan, edn. 2, pp. 357-358 (1974).
- 18. S. Glasstone, An Introduction to Electro Chemistry, D. Van Notrand, pp. 878-114 (1965).

(Received: 15 November 2006; Accepted: 22 October 2007) AJC-6033

INTERNATIONAL CONFERENCE ON CHEMICAL ENGINEERING (ICCE'08)

22 — 24 OCTOBER 2008

SAN FRANCISCO, USA

Contact: email: wcecs@iaeng.org