NOTE

Synthesis and Crystal Structure of Ni[phen(DTC)₂H₂O]·0.5H₂O

JIAN-HONG BI*, HONG-FANG WANG[†], ZI-XIAN HUANG[‡],
WEN-TAO BI[†] and NAI-LIANG HU[†]
Department of Chemistry, Hefei Teachers College, 327, Jinzhai Street
Hefei, Anhui 230061, P.R. China
E-mail: hxx010101@126.com

A novel complex Ni[phen(DTC)₂H₂O]·0.5H₂O, where phen = 1,10-phenanthroline and DTC is biphthalate, was synthesized and characterized by IR spectra, elemental analysis and single-crystal X-ray. The crystal is orthorhombic, space group Pbcm with unit cell parameters: a=11.6669(6) Å, b=11.1701(6) Å, c=14.0370(6) Å, $\alpha=90^{\circ},$ $\beta=90^{\circ},$ $\gamma=90^{\circ},$ V = 1829.31(16) ų, Z = 4, Mr = 430.05, Dc = 1.561Mg/cm³, $\mu=1.099$ mm¹, F(000)=884, T = 293(2) K, R = 0.0351, wR = 0.0930 with I > 2σ(I). The crystal structure analysis shows that the nickel(II) is a five-coordinated in a slightly distorted tetragonal pyramid.

Key Words: Nickel(II) compound, Interactions, Crystal structure.

The organic aromatic carboxylic acid with metal ions build the one-dimensional chain, layered or mesh structure of the polymer supramolecular, which is currently of great interest chemistry and crystal research in the field of engineering ¹⁻⁸. In this paper, the synthesis and crystal structure of nickel(II) complex with the composition, Ni[phen(DTC)₂H₂O]·0.5H₂O, where phen = 1,10-phenanthroline and DTC = biphthate.

IR spectra were recorded on a Nexus-870 spectrophotometer. Elemental analysis were performed on a Elementar Vario ELZ(III) analyzer.

Synthesis: A mixture of Ni(phen)₂ (10 mmol), biphthalate (10 mmol) and H₂O (30 mL) was sealed in a 50 mL cone bottle under room temperature for 7 d. The product was brown pillar-shaped crystal. Elemental analysis (%) calcd. For $C_{20}H_{15}N_2O_{5.5}Ni$: C, 38.71 , H, 4.84, N, 9.03, Ni, 19.03; Found C, 38.70, H, 4.86, Ni, 19.00, N, 9.06. IR (KBr, ν_{max} , cm⁻¹): (C=O) 1620, (C=C) 1520, 1420, (phen) 848, 725.

[†]School of Chemistry and Chemical Engineering, Anhui University, Hefei-230039, P.R. China.

[‡]Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou-350002, P.R. China.

Crystal structure determination: A single crystal 0.65 mm × 0.35 mm × 0.20 mm was selected for crystallographic data collection at 293(2)K, and structure determinated with graphite-monochromatic MoK $_{\alpha}$ radiation (λ = 0.71073 Å). A total of 13299 reflections were collected in the range of 2.52° \leq 0 \leq 27.48°, of which 2160 reflections were unique with R $_{\text{int}}$ = 0.0211 and R = 0.0363 and wR = 0.0939; where w = 1/[σ^2 (F $_0^2$) + (0.0465P) 2 + 1.1654P] and P = (F $_0^2$ + 2F $_0^2$)/3. The maximum and minimum peaks on the final difference Fourier map are corresponding to 0.789 and -0.251 e/Å 3 , respectively. The CCDC numbers was 607363.

The atomic coordinates and thermal parameters are listed in Table-1, and the selected bond lengths and bond angles in Table-2. Fig. 1 shows the molecular structure of the title compound. Fig. 2 shows the packing diagram of the title compound. From the Fig. 1, it is easy to see that the Ni(II) ion is five-coordinated and the whole molecular is in a slightly tetragonal pyramid.

TABLE-1 ATOMIC COORDINATES (\times 10⁴) AND THERMAL PARAMETERS (\times 10³ Å²)

Atom	X	Y	Z	U(eq)
Ni	4768	3865(1)	2500(1)	24(1)
N	6059(2)	4034(1)	3411(1)	31(1)
C(1)	3478(2)	2703(2)	3948(1)	28(2)
C(2)	2387(2)	2624(2)	4511(1)	27(1)
C(5)	6027(2)	4012(2)	4358(3)	37(1)
C(6)	6990(2)	4272(2)	4940(2)	44(1)
O(1)	3575(1)	3647(1)	3446(1)	37(1)
O(2)	4176(8)	1868(1)	3985(1)	38(1)

TABLE-2 SELECTED BOND DISTANCES (Å) AND ANGLES (°)

Bond	Length	Angle	(°)	Angle	(°)
Ni-O(1)	1.9390(14)	O(1A)-Ni-O(1)	86.46(9)	N(11)-Ni-N(12)	79.7(2)
Ni-N(3)	2.0123(17)	O(1A)-Ni-O(1)	176.98(7)	C(20)-N(12)-Ni	129.0(4)
N-C(5)	1.3260(3)	O(1A)-Ni-O(1A)	95.70(7)	N(14)-Ni-N(11)	169.5(19)
N-C(9)	1.3610(3)	O(1)-Ni-N(1)	90.40(12)	C(21)-N(12)-Ni	112.2(4)
C(1)-O(2)	2.0830(5)	O(5)-N(1)-O(4)	28.40(6)	N(4)-C(4)-Ni	174.7(7)

In Fig. 2, it is notable that the structure of infinite one-dimensional chains expanding along the a axis, and the adjacent one-dimensional chains are extended into a two-dimensional supramolecular array with pentagonal large cavities by hydrogen bonds and other weak interaction.

4968 Bi et al. Asian J. Chem.



Fig. 1. Molecular strucxture of the Ni[phen(DTC)₂H₂O]·0.5H₂O

Fig. 2. Packing diagram of the Ni[phen(DTC)₂H₂O]·0.5H₂O

Conclusion

Crystal structure of a novel Nick(II) complex has been synthesized and characterized by IR, elemental analysis and X-ray diffraction analysis.

ACKNOWLEDGEMENT

This work is financially supported by the Nature Science Foundation of Anhui Universities, China.

REFERENCES

- 1. B. Moulton and M. Zaworotko, J. Chem. Rev., 101, 1629 (2001).
- 2. K.I. Nattinen and K. Rissanen, Cryst. Eng. Commun., 5, 326 (2003).
- J.H. Bi, F.H. Yao, Z.X. Huang, H.L. Wang and N.L. Hu, Asian J. Chem., 19, 5360 (2007).
- $4. \hspace{0.5cm} S. \hspace{0.5cm} Mohanta, H.-H. \hspace{0.5cm} Lin, C.-J. \hspace{0.5cm} Lee \hspace{0.5cm} and \hspace{0.5cm} H.-H. \hspace{0.5cm} Wei, \hspace{0.5cm} \textit{Inorg. Chem. Commun.}, \textbf{5}, 585 \hspace{0.5cm} (2002).$
- 5. F.A. Cotton, S.M. Morehouse and J.S. Wood, *Inorg. Chem.*, 3, 1603 (1964).
- 6. J.H. Bi, L.T. Kong and Z.X. Huang, *Asian J. Chem.*, **19**, 5229 (2007).
- 7. O.M. Yaghi and H. Li, Acc. Chem. Res., 31, 474 (1998).
- 8. J.H. Bi, J.M. Song, Z.X. Huang, Y.H. Wang and L.T. Kong, *Asian J. Chem.*, **18**, 2365 (2006).
- J.H. Bi, F.X. Xie, X.D. Zhao, Q. Chen, J.D. Xu and S.S. Ni, *Asian J. Chem.*, 16, 137 (2004).

(Received: 31 December 2007; Accepted: 15 March 2008) AJC-6488