NOTE

Isomerism, Conformation and Molecular Symmetry in Phosphorus Compounds

Shiv Prakash Mishra*, S.C. Oiha and L.P. Pathak \dagger
Department of Chemistry, Government Postgraduate College
Musafirkhana, Sultanpur-227 817, India

The phospha-V-ates and phospha-V-azenes have shown to the stereo- and geometrical isomerism, chair-boat conformation and $\mathrm{C}_{3 v}, \mathrm{C}_{2 \mathrm{~h}}$ and $\mathrm{D}_{3 \mathrm{~h}}$ molecular symmetry in their novel structure, which are structurally characterized by X-ray analyses, IR, Raman, ${ }^{31} \mathrm{P}$ NMR and vibrational spectra.

Key Words: Phosphorus polymers, Phosphates, Phosphazenes.

There is ample evidence that the trimeta-phosphate $\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)^{3-}$ ion rings have chair conformation with $\mathrm{C}_{3 \mathrm{v}}$ point-group ${ }^{1}$ in crystalline solid state and in solution consistent with $\mathrm{D}_{3 \mathrm{~h}}$ molecular symmetry ${ }^{2}$, where as the tetrametaphosphate $\left(\mathrm{P}_{4} \mathrm{O}_{12}\right)^{4}$ ion rings are puckered but conformations vary from compound to compound ${ }^{3}$.

Fig. 1a. Chair form of trimetaphosphate

Fig. 1b. Boat(I)-chair(II) conformation in $\left(\mathrm{P}_{4} \mathrm{O}_{12}\right)^{4}$ ion

[^0]Extensive interest in the phosphazenes, the hydrolysis of trimeric chloride to the acid, takes place slowly with a tautomeric change as shown for the derivatives of alcohol ${ }^{4}$ and amines ${ }^{5}$. The chelated trimer spirophosphazenes such as 1,1-dichloro-trans-3,5-bis(p-tolyl)-3,5-diphenyl cyclotriphosphazene have optical isomers ${ }^{6}$.

However, some cyclophosphazene ${ }^{7}$ derivatives and aryl-halogenophosphazenes also have geometrical (cis-trans) isomerism ${ }^{8-10}$.

Fig. 2. Tetramer, cis-(NPClPh) ${ }_{4}$.
For tetrameric phosphonitrilic chloride ${ }^{11}$.

Fig. 3. Boat(I)-chair(II)-conformation in tetramer $\left(\mathrm{NPCl}_{2}\right)_{4}$, (skeletal form)
Consequently, the alkoxy- and aryloxyphosphazenes show tautomerism ${ }^{12,13}$ and the aziridinyl-phosphazene's derivatives ${ }^{14}$ with partial replacement not only give-rise to positional but also cis-trans isomerism ${ }^{1}$.

The vibrational spectroscopic data of $\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)^{3-}$ ion having the P-O bond length of 0.1615 nm (endocyclic) and 0.1484 nm (exocyclic) even the larger one is about 0.01 nm shorter than would be anticipated for ion a single bond supporting the presence of $\pi-(\mathrm{p} \pi-\mathrm{d} \pi)$ bonding in all P-O bonds ${ }^{15}$. Where the crystal structure of the chair form of $\left(\mathrm{NH}_{4}\right) \mathrm{P}_{4} \mathrm{O}_{12}$ which gives equal ring $(0.1607 \mathrm{~nm})$ and terminal (0.1479 nm) P-O bonds with $\mathrm{C}_{2 \mathrm{~h}}$ molecular symmetry ${ }^{16}$. The structure of hexametaphosphate $\left(\mathrm{P}_{6} \mathrm{O}_{18}\right)^{6-}$ ion also shows equivalence in the two kinds of $\mathrm{P}-\mathrm{O}$ bond, both in close agreement with these observed for the tri- and tetra homologues.

The molecular geometry of P-N polymers has been assigned by Raman, IR and X-Ray analyses ${ }^{17}$, resembles that of the $\left(\mathrm{NPF}_{2}\right)_{\mathrm{x}}$, where $\mathrm{x}=3$ or 4; are planar, but larger rings are not planar. For other $\left(\mathrm{NPX}_{2}\right)_{n}$ compounds the six rings are planar with $\mathrm{D}_{3 \mathrm{~h}}$ symmetry, but larger rings are generally non-planar and NPN angles of $\sim 120^{\circ}$ and PNP angles of $\sim 132^{\circ} \mathrm{C}$. The P-N

Vol. 20, No. 6 (2008) Isomerism, Conformation \& Molecular Symmetry in P Compounds 4933
bond distances which are generally equal in these ring systems, lie in the range $1.55-1.61 \AA$; there considerable attention to P-N stretching ${ }^{18}$ is at an appreciable higher frequency ($1220 \mathrm{~cm}^{-1}$) than that expected for a $\mathrm{P}-\mathrm{N}$ single-(about $750 \mathrm{~cm}^{-1}$) bond of $c a .1 .75-1.80 \AA$ and paid to the nature of $\mathrm{P}-\mathrm{N} \pi$ bonding. These rings are conformationally flexible and π-bonding is only one of many factors that influence the conformation, but the matter is still subject to controversy. The main question concerns the extent of delocalization all around the rings show, kind of aromatic character, or whether these are more localized 'islands' within the NPN segments. Of course there may be considerable differences between the essentially planar rings and those that are puckered. The problem is a complicated one owing to the large number of orbitals potentially involved and to the general lack of ring planarity which means that rigorous assignment of σ and π character to individual orbitals is impossible.

Conclusion

The chemical analyses and spectroscopic data confirm that, the polymer of phosphorus such as phosphates and phosphazenes have shown the isomerism (stereo- and geometrical), chair-boat conformation and molecular symmetry (mostly $\mathrm{C}_{3 \mathrm{v}}, \mathrm{C}_{2 \mathrm{~h}}$ and $\mathrm{D}_{3 \mathrm{~h}}$), in this structure.

REFERENCES

1. D.A. Armitage, Inorg. Rings \& Cages, Edward Arnold (Pbs.) Ltd., London (1972).
2. W.P. Griffith and K.J. Rutt, J. Chem. Soc. A, 2331 (1968); 905 (1967).
3. M.T. Averbuch-Pouchot, Acta Crystallogr., C44, 1907, 1909 (1988).
4. B. Dishon, J. Am. Chem. Soc., 71, 2251 (1949).
5. H. Bode, K. Butow and G. Lienau, Chem. Ber., 81, 547 (1948).
6. C.D. Schmulbach, C. Derderian, O. Zeck and S. Sahuri, Inorg. Chem., 10, 195 (1971).
7. S.K. Pandey, R. Hasselbring, A. Steiner, D. Stalke and H.W. Roesky, Polyhedron, 12, 2941 (1993).
8. F.A. Cotton and G. Wilkinson, Adv. Inorg. Chem., John Wiley \& Sons. Inc., edn. 6 (1999).
9. G.E. Coxon and D.B. Sowerby, J. Chem. Soc. A, 1567 (1967).
10. R.A. Shaw and C. Stratton, J. Chem. Soc., 5004 (1962).
11. N.L. Paddock, Development in Inorg. Polym. Chem., Lappert-Leigh (Edd.), Elsevier Publ. Comp., NY (1962).
12. H.N. Stockes, J. Am. Chem. Soc., 17, 257, 275 (1895); 18, 629, 780 (1896); 19, 78 (1897).
13. R. Olthof, T. Migchelsen and A. Vos, Acta Cryst., 19, 596 (1965).
14. R. Keat and R.A. Shaw, J. Chem. Soc., 2215 (1965).
15. H.M. Ondik, Acta Cryst., 18, 226 (1965).
16. D.A. Koster and A.J. Wagner, J. Chem. Soc. A, 435 (1970).
17. D.F. Carrol and A. Wilson, J. Chem. Soc. A, 2548 (1960).
18. L.W. Daasch, J. Am. Chem. Soc., 76, 3403 (1954).

[^0]: \dagger Department of Chemistry, K.S.P.G. College, Ayodhya-224 123, India.

