Asian Journal of Chemistry

Synthesis and Conformational Analysis of 3,5,7-Triaryl-1,3,5,7-oxatriazocanes

ALI KAKANEJADIFARD*, ABEDIN ZABARDASTI and HADIS KAKANEJADIFARD† Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran Tel/Fax: (98)(661)2200185; E-mail: alikakanejadifard@yahoo.com

By condensation of arylamines and formaldehyde in equimolar ratio, using formic acid as catalyst and acetonitrile as a solvent at room temperature, 3,5,7-triaryl-1,3,5,7-oxatriazo-canes (2-5) were formed. The composition and structural formula of all compounds were confirmed by elemental analysis, IR, MS and NMR spectroscopy methods. Theoretical calculation were used for conformational analysis of 3,5,7-tri(4-chlorophenyl)-1,3,5,7-oxatriazocane in the gas phase at HF/3-21+ g(d,p) level of computational study. Results show that stability of various structures are in the order: crown > saddle > boat chair family.

Key Words: 3,5,7-Triaryl-1,3,5,7-oxatriazocane, *ab initio* Calculation, Conformational analysis.

INTRODUCTION

Cyclooctanes have been studied by numerous methods such as dipole moment and electron diffraction measurements, infrared, Raman, nuclear magnetic resonance (NMR) and X-ray diffraction¹⁻⁸. Cyclooctane could exist in some conformations, in which boat-chair and crown are usually known as the most stable conformation. Compounds with special substitution patterns or with heteroatoms often exist partially or mainly in crown conformation^{9,10}. Replacement of CH₂ group in cyclooctane by heteroatomes such as N, O and S leads to different conformational structures¹¹⁻¹⁴. In our proceeding paper, we reported the synthesis, conformation analysis, X-ray structural determination and anomeric effect of 3,7-diaryl-1,5-dioxa-3,7-diazacyclooctane (1)^{15,16}. In the present work, we report the synthesis of 3,5,7-triaryl-1,3,5,7-oxatriazocane along with theoretical calculation and conformational analysis of 3,5,7-tri(4-chlorophenyl)-1,3,5,7-oxatriazocane in the gas phase at HF/3-21+g(d,p) computational level.

[†]Department of Computer, Faculty of Engineering, Al-Zahra University, Tehran, Iran.

Vol. 20, No. 6 (2008)

Synthesis of 3,5,7-Triaryl-1,3,5,7-oxatriazocanes 4707

EXPERIMENTAL

All commercially available chemical reagents were used without further purification. Melting points were determined with an electrothermal 9200 apparatus and are uncorrected. Elemental analyses were carried out using a C, H, N Rapid-Heraeus apparatus. Mass data was obtained on a FISONS TRIO 1000 GC-Mass instrument. Infrared spectrum was recorded on a Shimadzu 4300 spectrometer. The NMR spectrum was recorded on a Brucker DRX-500 Avance spectrometer.

Synthesis of 3,5,7-tri(4-chlorophenyl)-1,3,5,7-oxatriazocane (2): To a stirred solution of 4-chloroaniline (1.91 g, 15 mmol) and formic acid (0.1 g, of 98 % aqueous solution, 2.2 mmol) in acetonitrile (75 mL) at 25 °C, formaldehyde (1.62 g, of 37 % aqueous solution, 20 mmol) was added slowly. The solution was stirred at room temperature for 24 h until a white precipitate was formed. The mixture was filtered, the precipitate washed with cold acetonitrile and recrystallized from THF. Yield: 0.90 g (84 %), m.p. 240 °C. IR (KBr, v_{max}, cm⁻¹): 1595, 1490 (C=C), 1409, 1363 (CH₂), 1257, 1165 (C-N), 1022 (C-O), 962, 927 C-Cl). ¹H NMR (Acetone-d₆, 30 °C) ppm: 6.66, 6.68, 7.33, 7.35 (dd, 8H, J = 8.98 Hz), 7.06, 7.07, 7.29, 7.30 (dd, 4H, J = 8.61 Hz), 4.99 (s, 4H, CH₂), 4.95 (s, 4H, CH₂). ¹H NMR (Pyridine-*d*₅, 25 °C) ppm: 6.68, 6.69. 7.28, 7.29 (dd, 8H, *J* = 7.65 Hz), 6.70, 6.71, 7.23, 7.24 (dd, 4H, J = 7.34 Hz), 4.94 (s, 4H, CH₂), 4.83 (s, 4H, CH₂). ¹³C NMR (Pyridine-*d*₅, 25 °C) ppm: 146.54, 146.37, 136.76, 136.67, 130.71, 130.29, 116.46, 116.29, 67.41, 62.73. The EI-MS, m/z: 454 (m⁺), 368, 183, 155, 77. Elemental analysis calculated for C₂₂H₂₀N₃OCl₃: C, 58.66; H, 4.44; N, 9.33; Cl, 23.66. Found: C, 58.64; H, 4.41; N, 9.36; Cl, 23.68. Condensation of 4-bromo-, 4-cyano- and 3-nitroaniline with formaldehyde under similar condition leads to 3-5.

3: Yield: 1.75 g (60 %), m.p. 242 °C. IR (KBr, v_{max} , cm⁻¹): 1585, 1492 (C=C), 1253, 1163 (C-N), 1016 (C-O), 927 (C-Br). ¹H NMR (Acetone-*d*₆, 25 °C) ppm: 6.67, 6.68, 7.34, 7.35 (dd, 8H, *J* = 8.97 Hz), 7.04, 7.06, 7.30, 7.31 (dd, 4H, *J* = 8.64 Hz), 5.00 (s, 4H, CH₂), 4.95 (s, 4H, CH₂). ¹³C NMR (Acetone-*d*₆, 25 °C) ppm: 145.93, 145.86, 136.64, 136.51, 130.58, 130.17, 116.33, 116.16, 68.79, 63.03. The EI-MS, m/z: 584 (m⁺), 368, 183, 155, 77. Elemental analysis calculated for C₂₂H₂₀N₃OBr₃: C, 45.28; H, 3.43; N, 7.20; Br, 41.16. Found: C, 45.27; H, 3.41; N, 7.21; Br, 41.17.

4: Yield: 0.75 g (38.4 %), m.p. 266 °C. IR (KBr, v_{max} , cm⁻¹): 2224 (C=N), 1596, 1494 (C=C), 1313, 1217, 1161 (C-N), 995 (C-O). ¹H NMR (Acetone-*d*₆, 25 °C) ppm: 7.11, 7.12, 7.49, 7.48 (dd, 8H, *J* = 8.46 Hz), 7.27, 7.25, 7.46, 7.47 (dd, 4H, *J* = 7.45 Hz), 5.32 (s, 4H, CH₂), 5.20 (s, 4H, CH₂). The EI-MS, m/z: 423 (m⁺), 146, 130, 104, 77. Elemental analysis calculated for C₂₅H₂₀N₆O: C, 71.43; H, 4.76; N, 20.00. Found: C, 71.38; H, 4.74; N, 20.03.

4708 Kakanejadifard et al.

Asian J. Chem.

5: Yield: 0.26 g (28.8 %), m.p. 290 °C. IR (KBr, v_{max} , cm⁻¹): 1618, 1537 (C=C), 1528, 1346 (NO2), 1450, 1408 (CH₂), 1274, 1205, 1164 (C-N), 1102 (C-O), 962, 927 (C-Cl). ¹H NMR (Acetone- d_6 , 25 °C) ppm: 7.82-7.27 (m, 12H), 5.19 (s, 4H, CH₂), 5.16 (s, 4H, CH₂). The EI-MS, m/z: 484 (m⁺), 166, 150, 138, 77. Elemental analysis calculated for C₂₂H₂₀N₆O₇: C, 55.00; H, 4.16; N, 17.50. Found: C, 55.97; H, 4.17; N, 17.39.

RESULTS AND DISCUSSION

Condensation was performed with formaldehyde and arylamines *via* a direct, one pot synthesis of 3,5,7-triphenyl-1,3,5,7-oxatriazocane derivatives (**2-5**). Substituents are including 4-chloro, 4-bromo, 4-cyano and 3-nitro phenyl (**Scheme-1**).

In the case of **2**, the EI mass spectrum, showed a molecular ion peak at m/z 454 and elemental analysis is consistent for $C_{22}H_{20}N_3OCl_3$. In the IR spectrum of **2** both amine and carbonyl absorptions did not observe. Characteristics of the proton spectrum are two singlet at δ 4.83 and 4.94 ppm for CH₂ and two doublet of doublet at 6.70, 6.71 and 7.23, 7.24 for CH aromatic rings protons. In ¹³C NMR spectrum of **2** the carbon resonance of CH₂ groups is found to be at the 67.41 and 62.73 ppm. The aromatic carbons appeared at 116.29-146.54 ppm. The IR, ¹H and ¹³C NMR data for compounds **3-5** are similar to those found for **2**. These previously unreported compounds were obtained from reaction mixture in a highly pure crystalline form in 30-60 % yield. Reactions are fast and complete in a few hours. Best yields are obtained at pH = 8-9 but drastically reduced under highly basic or acidic conditions. The composition and structural formula of **2-5** were confirmed by a combination of elemental analysis, IR, MS and NMR methods.

ab initio Calculations were applied for conformational analysis of 3,5,7-tri(4-chlorophenyl)-1,3,5,7-oxatriazocane in the gas phase at HF/3-21+g(d,p) computational levels. For these calculations crown, saddle and boat-chair were considered as possible conformers of 3,5,7-tri(4-chlorophenyl)-1,3,5,7-oxatriazocanes (Fig. 1).

Theoretical calculations show global minimums for crown, saddle and boat-chair conformers with differences in total energy -7.21, -5.82 and 0 relative to boat-chair as the less stable conformer, respectively. The calculated energy for different conformations is given in Table 1.

Fig. 1. Possible conformers of 2

TABLE-1 CALCULATED TOTAL ENERGY, DIFFERENCE IN TOTAL ENERGY (ΔE) AND ZPVE for **2**

Conformer	Total energy (au)	ΔE (kcal mol ⁻¹)	ZPVE (au)
Crown	-2449.36787	-7.21	0.445726
Saddle	-2449.36565	-5.82	0.445029
Boat chair	-2449.356382	0	0.445580

The calculated energies correctly predict that the crown conformation is preferred over the saddle and boat-chair conformations (Fig. 2). Harmonic vibrational frequency calculations at HF/3-21+g(d,p) level confirmed the structures as minima and enabled the evaluation of zero-point vibrational energies (ZPVE). The torsional angles (ω) as well as other structural properties, bond length and bond angles were measured for previously optimized conformers crown, saddle and boat-chair (Tables 2-4).

Fig. 2. Optimized Crown conformers of 2

4710 Kakanejadifard et al.

Asian J. Chem.

TABLE-2 CALCULATED GEOMETRICAL PROPERTIES FOR CROWN CONFORMER OF **2** AT HF/3-21+G(d,p)

Bond leng	th (Å)	Bond angles (°)	Torsion angles (°)	
O(1)-C(2)	1.45765	O(1)-C(2)-N(4)	113.4	O(1)-C(2)-N(4)-C(6)	65.3
O(1)-C(3)	1.43185	C(2)-N(4)-C(6)	117.7	O(1)-C(3)-N(5)-C(7)	-20.5
C(2)-N(4)	1.44040	O(46)-C(2)-N(7)	115.1	O(46)-C(2)-N(7)-C(1)	87.9
O(46)-C(10)	1.45600	C(2)-N(7)-C(1)	118.8	O(46)-C(10)-N(15)-C(9)	-82.2
O(46)-C(2)	1.45500	O(46)-C(10)-N(15)	115.4	C(10)-N(15)-C(9)-N(8)	88.7
C(10)-N(15)	1.43600	C(10)-O(46)-C(2)	119.9	N(15)-C(9)-N(8)-C(1)	-85.2
C(2)-N(7)	1.44200	N(15)-C(9)-N(8)	116.2	C(9)-N(8)-C(1)- N(7)	77.5
N(15)-C(9)	1.47100	C(10)-N(15)-C(9)	118.7	N(8)- C(1)-N(7)-C(2)	-79.5
N(7)-C(1)	1.47300	C(9)-N(8)-C(1)	120.1	O(46)-C(2)-N(7)-C(16)	-77.0
C(9)-N(8)	1.46100	N(7)-C(1)-N(8)	118.1	O(46)-C(10)-N(15)-C(36)	76.2
C(1)-N(8)	1.45800	C(10)-N(15)-C(36)	119.0	N(8)-C(1)- N(7)-C(16)	84.9
C(2)-H(6)	1.08200	(9)-N(15)-C(36)	118.7	N(8)-C(9)-N(15)-C(36)	-69.8
C(2)-H(3)	1.07600	C(9)-N(8)-C(26)	117.7	C(2)-O(46)-C(10)-H(12)	-39.5
C(10)-H(11)	1.07500	C(1)-N(8)-C(26)	121.2	C(2)-O(46)-C(10)-H(11)	-156.9
C(10)-H(12)	1.08200	C(1)-N(7)-C(16)	121.1	C(10)-O(46)-C(2)-H(3)	150.1
C(9)-H(13)	1.08100	C(2)-N(7)-C(16)	118.2	C(10)-O(46)-C(2)-H(6)	32.6
C(9)-H(14)	1.07600	O(46)-C(2)-H(3)	104.4	H(12)-C(10)-N(15)-C(36)	-161.7
C(1)-H(5)	1.07500	O(46)-C(2)-H(6)	108.7	H(11)-C(10)-N(15)-C(36)	-41.1
C(1)-H(4)	1.08200	O(46)-C(10)-H(11)	104.3	C(10)-N(15)-C(9)-H(13)	-32.9
N(15)-C(36)	1.42200	O(46)-C(10)-H(12)	108.3	C(10)-N(15)-C(9)-H(14)	-149.6
N(7)-C(16)	1.41800	N(7)-C(2)-H(3)	109.4	C(26)-N(8)-C(9)-H(13)	-155.9
N(8)-C(26)	1.43400	N(7)-C(2)-H(6)	109.0	C(26)-N(8)-C(9)-H(14)	-38.9
		N(7)-C(1)-H(4)	6.4	C(26)-N(8)-C(1)-H(5)	32.9
		06.4 N(7)-C(1)-H(5)	108.8	C(26)-N(8)-C(1)-H(4)	149.3
		N(8)-C(1)-H(4)	107.5	C(16)-N(7)-C(1)-H(5)	-37.9
		N(8)-C(1)-H(5)	107.5	C(16)-N(7)-C(1)-H(4)	-154.3
		N(8)-C(9)-H(13)	108.6	C(16)-N(7)-C(2)-H(3)	40.2
		N(8)-C(9)-H(14)	107.8	C(16)-N(7)-C(2)-H(6)	160.6
		N(15)-C(9)-H(13)	107.2		
		N(15)-C(9)-H(14)	108.6		
		N(15)-C(10)-H(11)	109.6		
		N(15)-C(10)-H(12)	108.9		

TABLE-3 CALCULATED GEOMETRICAL PROPERTIES FOR ADDLE CONFORMER OF **2** AT HF/3-21+G(d,p)

Bond length (Å)		Bond angles (°)		Torsion angles (°)	
O(46)-C(10)	1.455	O(46)-C(2)-N(7)	115.1	O(46)-C(2)-N(7)-C(1)	105.1
O(46)-C(2)	1.455	C(2)-N(7)-C(1)	118.1	O(46)-C(10)-N(15)-C(9)	105.1
C(10)-N(15)	1.442	O(46)-C(10)-N(15)	115.1	C(10)-N(15)-C(9)-N(8)	-113.6
C(2)-N(7)	1.442	C(10)-O(46)-C(2)	121.1	N(15)-C(9)-N(8)-C(1)	36.7
N(15)-C(9)	1.458	N(15)-C(9)-N(8)	112.1	C(9)-N(8)-C(1)-N(7)	36.6
N(7)-C(1)	1.458	C(10)-N(15)-C(9)	118.1	N(8)-C(1)-N(7)-C(2)	-113.6
C(9)-N(8)	1.466	C(9)-N(8)-C(1)	118.3	O(46)-C(2)-N(7)-C(16)	-73.1

Vol. 20, No. 6 (2008)

Synthesis of 3,5,7-Triaryl-1,3,5,7-oxatriazocanes 4711

Bond length (Å)		Bond angles (°)		Torsion angles (°)	
C(1)-N(8)	1.466	N(7)-C(1)-N(8)	112.1	O(46)-C(10)-N(15)-C(36)	-73.2
C(2)-H(6)	1.076	C(10)-N(15)-C(36)	121.0	N(8)-C(1)- N(7)-C(16)	64.63
C(2)-H(3)	1.077	C(9)-N(15)-C(36)	120.8	N(8)-C(9)-N(15)-C(36)	64.6
C(10)-H(11)	1.076	C(9)-N(8)-C(26)	120.8	C(2)-O(46)-C(10)-H(12)	-153.0
C(10)-H(12)	1.077	C(1)-N(8)-C(26)	120.8	C(2)-O(46)-C(10)-H(11)	90.2
C(9)-H(13)	1.080	C(1)-N(7)-C(16)	120.8	C(10)-O(46)-C(2)-H(3)	-153.1
C(9)-H(14)	1.079	C(2)-N(7)-C(16)	121.0	C(10)-O(46)-C(2)-H(6)	90.1
C(1)-H(5)	1.080	O(46)-C(2)-H(3)	104.0	H(12)-C(10)-N(15)-C(36)	44.7
C(1)-H(4)	1.079	O(46)-C(2)-H(6)	108.1	H(11)-C(10)-N(15)-C(36)	165.6
N(15)-C(36)	1.405	O(46)-C(10)-H(11)	108.1	C(10)-N(15)-C(9)-H(13)	126.3
N(7)-C(16)	1.405	O(46)-C(10)-H(12)	104.0	C(10)-N(15)-C(9)-H(14)	8.7
N(8)-C(26)	1.398	N(7)-C(2)-H(3)	111.1	C(26)-N(8)-C(9)-H(13)	-21.8
		N(7)-C(2)-H(6)	108.5	C(26)-N(8)-C(9)-H(14)	96.7
		N(7)-C(1)-H(4)	107.2	C(26)-N(8)-C(1)-H(5)	-21.8
		[N(7)-C(1)-H(5)	110.5	C(26)-N(8)-C(1)-H(4)	96.7
		N(8)-C(1)-H(4)	111.2	C(16)-N(7)-C(1)-H(5)	-55.4
		N(8)-C(1)-H(5)	107.7	C(16)-N(7)-C(1)-H(4)	-173.1
		N(8)-C(9)-H(13)	107.7	C(16)-N(7)-C(2)-H(3)	44.7
		N(8)-C(9)-H(14)	111.2	C(16)-N(7)-C(2)-H(6)	165.6
		N(15)-C(9)-H(13)	110.4		
		N(15)-C(9)-H(14)	107.2		
		N(15)-C(10)-H(11)	108.5		
		N(15)-C(10)-H(12)	111.1		

TABLE-4
CALCULATED GEOMETRICAL PROPERTIES FOR
BOAT CHAIR CONFORMER OF 2 AT HF/3-21+G(d,p)

Bond leng	gth (Å)	Bond angles	(°)	Torsion angles (°)	
O(1)-C(2)	1.45765	O(1)-C(2)-N(4)	113.4	O(1)-C(2)-N(4)-C(6)	65.3
O(1)-C(3)	1.43185	C(2)-N(4)-C(6)	117.7	O(1)-C(3)-N(5)-C(7)	-20.5
C(2)-N(4)	1.44040	O(1)-C(3)-N(5)	115.1	C(10)-N(4)-C(6)-N(8)	75.3
C(3)-N(5)	1.46652	C(3)-O(1)-C(2)	121.1	C(10)-N(4)-C(2)-O(1)	-105.2
N(4)-C(6)	1.45455	N(5)-C(7)-N(8)	112.1	C(10)-N(4)-C(2)-H(35)	16.1
N(5)-C(7)	1.45613	C(3)-N(5)-C(7)	118.1	C(10)-N(4)-C(2)-H(36)	139.0
C(6)-N(8)	1.48580	C(9)-N(8)-C(1)	118.3	C(10)-N(4)-C(6)-H(38)	-162.6
C(7)-N(8)	1.47668	N(4)-C(6)-N(8)	115.0	C(10)-N(4)-C(6)-H(37)	-45.2
C(2)-H(35)	1.07647	C(6)-N(8)-C(7)	117.4	C(21)-N(8)-C(7)-H(39)	-101.9
C(2)-H(36)	1.07616	N(8)-C(7)-N(5)	112.3	C(21)-N(8)-C(7)-H(40)	17.7
C(6)-H(37)	1.07783	N(5)-C(3)-O(1)	110.2	C(21)-N(8)-C(6)-H(38)	82.8
C(6)-H(38)	1.08553	C(2)-N(4)-C(10)	120.8	C(21)-N(8)-C(6)-H(37)	-35.2
C(3)-H(41)	1.07961	C(6)-N(4)-C(10)	120.8	N(4)-C(6)-N(8)-C(7)	55.7
C(3)-H(46)	1.08141	C(6)-N(8)-C(21)	115.6	C(6)-N(8)-C(7)- N(5)	-75.9
C(7)-H(39)	1.07789	C(7)-N(8)-C(21)	118.9	N(8)- C(7)-N(5)-C(3)	103.0
C(7)-H(40)	1.07781	C(7)-N(5)-C(9)	120.8	O(1)-C(3)-N(5)-C(9)	161.6
N(4)-C(10)	1.42080	C(3)-N(5)-C(9)	120.3	C(9)-N(5)-C(7)-H(39)	157.9
N(5)-C(9)	1.39204	O(1)-C(2)-H(35)	108.4	C(9)-N(5)-C(7)-H(40)	39.8
N(8)-C(21)	1.42490	O(1)-C(2)-H(36)	103.0	C(9)-N(5)-C(3)-H(41)	-81.4
		O(1)-C(3)-H(41)	105.4	C(9)-N(5)-C(3)-H(46)	40.5

4712 Kakanejadifard et al.

Asian J. Chem.

Bond length (Å)	Bond angles (°)		Torsion angles (°)
	O(1)-C(3)-H(46)	110.2	
	N(4)-C(2)-H(35)	109.7	
	N(4)-C(2)-H(36)	111.5	
	N(4)-C(6)-H(37)	109.1	
	N(4)-C(6)-H(38)	106.9	
	N(8)-C(6)-H(37)	107.2	
	N(8)-C(6)-H(38)	109.8	
	N(8)-C(7)-H(39)	111.4	
	N(8)-C(7)-H(40)	107.6	
	N(5)-C(7)-H(39)	107.5	
	N(5)-C(7)-H(40)	108.8	
	N(5)-C(3)-H(41)	111.9	
	N(5)-C(3)-H(46)	109.1	

REFERENCES

- 1. D.E. Sands and V.W. Day, *Acta Crystallogr.*, **19**, 278 (1965).
- R. Sass and J. Donohue, *Acta Crystallogr.*, 11,
 S. Abrahams, *Acta Crystallogr.*, 8, 661 (1955). R. Sass and J. Donohue, Acta Crystallogr., 11, 497 (1958).
- 4. H. Schend, Acta Crystallogr. B, 27, 185 (1971).
- 5. J.B. Hendrickson, J. Am. Chem. Soc., 89, 7047 (1967).
- 6. F.A.L. Anet and M. Jacques, J. Am. Chem. Soc., 88, 2585 (1966).
- 7. F.A.L. Anet and J.S. Hartman, J. Am. Chem. Soc., 85, 1204 (1963).
- 8. J.E. Anderson, E.S. Glazer, D.L. Griffith, R. Knorr and J.D Roberts, J. Am. Chem. Soc., 91, 1386 (1969).
- 9. F.A.L. Anet, Conformational Analysis, Academic Press, New York, pp. 169-220 (1971).
- 10. R. Glass, Conformation Analysis of Medium-sized Heterocycles, VCH, Ch. 2 (1988).
- 11. J.M. Lehn and F.G. Riddel, Chem. Commun., 803 (1966).
- 12. G. Candenas, M.J. Rosales-Haz, R. Contreras and A. Flores-Parra, Tetrahedron Asym., 5, 633 (1994).
- 13. R. Becker and W. Rohr, Liebigs. Ann. Chem., 191 (1981).
- 14. H.E. Borowski and A. Haas, Chem. Ber., 115, 523 (1982).
- 15. A. Kakanejadifard, L. Mahmodi, A. Yari and A. Mohajeri, J. Heterocycl. Chem., 43, 1695 (2006).
- 16. A. Kakanejadifard, L. Mahmodi and A. Yari, Anal. Sci., 22, 169 (2006).

(Received: 13 September 2007; Accepted: 10 March 2008) AJC-6445