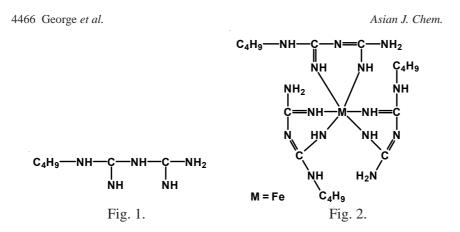
Asian Journal of Chemistry

Phenomenological and Kinetic Aspects of The Thermal Decomposition of Fe(III) Buformin Complex

ABRAHAM GEORGE[†] and HEMA C. NAIR^{*} Directorate of Ground Water Department, Government of Kerala Trivandrum-695 005, India E-mail: hemavinodpg@yahoo.com

Fe(III) complex of butyl biguanide (buformin) having an octahedral structure has been subjected to thermal analysis. The phenomenological and kinetic aspects of the decomposition have been studied. The Coats-Redfern equation was used for the kinetic studies.

Key Words: Buformin, Deprotonation, Octahedral, Coats-Redfern.


INTRODUCTION

Biguanides and their derivatives are highly versatile ligands and are very important from the chemotherapeutic point of view¹. The iron(III) complex of buformin have been prepared and found to have an octahedral structure². The complex is neutral and complexation takes place after deprotonation. The hydrogen atom is lost from the nitrogen coming in between the carbon atoms. The structure of buformin and the complex is given in Figs. 1 and 2, respectively. In the present study the non isothermal thermogravimetric study of Fe(III) complex of buformin is undertaken³. The phenomenological and kinetic aspects of the decomposition of the complex are followed employing the techniques of thermogravimetry and derivative thermogravimetry. There are different methods for obtaining suitable kinetic equations⁴. Among them integral methods⁵⁻⁸ are considered to be the most accurate method available for the determination of kinetic parameters from TG data^{9,10}. Coats-Redfern method¹¹ is the important and largely used integral method and in the present study, the decomposition behaviour of the complex is analyzed using Coats-Redfern plots.

EXPERIMENTAL

TG and DTG were recorded on a Mettler Toledo SR System thermal analyzer in nitrogen atmosphere. The heating rate was 100/min and the flow rate was 5mL/min. The sample was heated to a maximum of 800 °C.

[†]Department of Chemistry, Mar Ivanios College, Trivandrum-695 015, India.

RESULTS AND DISCUSSION

The complex shows a three stage decomposition pattern. The temperature range and peak for all the three stages are given in Table-1. The TG data shows that the complex is stable upto 190 °C as there is a horizontal layout upto 190 °C. This shows the absence of any hydrated or coordinated water. This has also been proved in the structural studies. Peak temperature for the first stage of decomposition is 234 °C. For the second and third stages it is 318 and 578 °C, respectively. The first stage of decomposition starts at 190 °C and ends at 250 °C and shows a loss of 13.9 % of mass. The second stage of decomposition starts at 280 °C and ends at 380 °C and shows a loss of 55.8 % of mass. For the third stage of decomposition the starting temperature is 500 °C and the final temperature is 660 °C which shows a mass loss of 9.2 %.

TABLE-1 PHENOMENOLOGICAL DATA OF DECOMPOSITION

	THENOWER OF OUR DATE OF THE OF OF OF OF OF OF								
	Temperature	Wt. (mg)	Wt. loss in mg (w_{α})	Wt. loss (%)					
Stage-I									
T _i	190	3.46	0.48	13.9					
T _f	250	2.98							
T _p	234								
Stage-II									
T _i	280	2.89	1.93	55.8					
T_{f}	380	0.96							
T _p	318								
Stage-III									
T _i	500	0.78	0.32	9.2					
$T_{\rm f}$	660	0.46							
T _p	578								

Vol. 20, No. 6 (2008)

The computational details of the thermal decomposition in the three stages are given in Table-2. All the three stages have an order parameter n = 2. The Coats-Redfern plots of the three stages were made. The kinetic parameters such as activation energy, pre-exponential factor and entropy were calculated based on the plot and are listed in Table-3.

COMPUTATIONAL DETAILS FOR THERMAL DECOMPOSITION								
Temp.	Weight (W)	С	g(α)	$\log[g(\alpha)/T^2]$	$1/T \times 10^3$			
State-I								
$w_{\alpha} = 0.48$ mg, $n = 2$, $r = 1$, slope = -1.5476, intercept = 2.7481								
200	0.14	0.71	0.4084	-4.99	5.00			
210	0.23	0.52	0.9230	-4.67	4.76			
220	0.29	0.40	1.5000	-4.57	4.54			
230	0.37	0.23	3.3400	-4.19	4.35			
240	0.44	0.08	11.5000	-3.69	4.16			
State-II								
$w_{\alpha} = 1.93$ mg, $n = 2$, $r = 0.9998$, slope = -3.72, intercept = 6.87								
290	0.17	0.91	0.098	-5.93	3.45			
300	0.40	0.79	0.265	-5.53	3.33			
310	0.67	0.65	0.530	-5.25	3.22			
320	0.97	0.49	1.040	-4.99	3.13			
330	1.27	0.34	1.940	-4.75	3.03			
340	1.53	0.21	3.760	-4.48	2.94			
350	1.75	0.09	10.100	-4.08	2.85			
360	1.89	0.02	49.000	-3.42	2.77			
		Sta	te-III					
Wo	$_{\alpha} = 0.32 \text{ mg}, n = 2$	2, r = 0.999	99, slope = -7	7.2, intercept = 7	7.37			
530	0.06	0.81	0.23	-6.08	1.88			
540	0.11	0.66	0.51	-5.75	1.85			
550	0.14	0.56	0.78	-5.58	1.81			
560	0.18	0.43	1.33	-5.37	1.78			
570	0.22	0.31	2.23	-5.16	1.75			
580	0.26	0.18	4.55	-4.86	1.72			
590	0.28	0.13	6.69	-4.72	1.69			

TABLE-2

The activation energy for the three stages of decomposition are comparatively small and entropy of activation is found to have a negative value. This normally happens when the products of decomposition are gases¹². Thus from the kinetic parameters, it has to be inferred that in all the three stages of decomposition, gaseous products are formed leaving behind the 4468 George et al.

Asian J. Chem.

TABLE-3 KINETIC PARAMETERS FOR THE THREE STAGES OF DECOMPOSITION

Stage	Peak temperature	Activation energy (J/mol)	Pre exponential term, A (s ⁻¹)	Entropy of activation (J/K/mol)
Ι	234	29.68	$1.9987 imes 10^4$	-160.588
Π	318	71.23	6.2900×10^{8}	-77.010
III	578	137.09	3.8000×10^9	-67.030

solid residue in the final stage. A negative value of entropy shows that the activator complex is more ordered. Since the decomposition involves volatilization, there is a possibility that the collision between the molecules are reduced, especially in the first stage.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the help provided by the Principal, Mar Ivanios College, Trivandrum and Prof. P. Indrasenan, Prof and Head, Department of Chemistry, University of Kerala, Calicut, India in providing necessary instrumental support.

REFERENCES

- 1. P.V. Bharatan, D.S. Patel and P. Iqbal, J. Med. Chem., 48, 7615 (2005).
- 2. A. George and H.C. Nair, Asian J. Chem., 20, 4460 (2008).
- 3. J.H. Flynn, in Thermal Analysis, Academic Press, New York, Vol. 2, p. 1111 (1969).
- 4. J. Sestak, A. Brown, V. Rihak and G. Berggren, Thermal Analysis, Academic Press, New York, Vol. 2, p. 1036 (1969).
- 5. J. Zsako, J. Phys. Chem., 72, 2406 (1968).
- 6. V. Satava and F. Skvara, J. Am. Cerem. Soc., 52, 591 (1969).
- 7. J.R. McCallum and J. Tanner, Eur. Polym. J., 6, 1033 (1970).
- 8. G. Gyulai and E.J. Greenhow, J. Therm. Anal., 6, 279 (1974).
- 9. J. Sestak, Talanta, 13, 567 (1966).
- 10. J. Sestak, Silikaty, 11, 153 (1967).
- 11. A.W. Coats and J.F. Redfern, Nature, 201, 68 (1964).
- 12. C. Gouri, Ph.D. Thesis, Kerala University (2000).

(Received: 15 June 2007;

Accepted: 6 March 2008)

AJC-6409