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In this paper, an artificial neural network (ANN) based modeling
has been presented. Simulation of spatial variability of available
phosphorus levels for soils on the tomato crop area was done by
using the model of ANN. The method is commonly successful in
issues such as model selection and classification, function fore-
cast, determination of optimum value and data classification. In
this study, a program was developed in C++ programming langu-
age to analysis the data by means of ANN method. For this aim,
topsoil (0-20 cm), subsoil (20-40 cm) and plant samples were taken
from the tomato plots based on 20 meters period and the area was
modeled with 5 meters period. The findings clearly showed that a
great spatial variability occurred in available phosphorus for top-
soil and subsoil. In order to observe the performance of ANN based
phosphorus model, experimental data curves have been compared
with the curves obtained after the ANN training. After comparing
the experimental results with the recommended method, it is
observed that it shows realistic results. The results obtained from
the simulation show that the modeling which is formed for the
available phosphorus change is applicable. Therefore the developed
model could be an alternative method for the predictions of phos-
phorus in tomato crop areas since the created neural network model
of phosphorus resembles the actual data.

Key Words: Artificial neural network, Phosphorus prediction,
Tomato crop, Identification, Data mining, Simulation.

INTRODUCTION

Factors affecting crop yield and quality are site-specific1. Site-specific
nutrient managements increase farmers' profitability and reduce the environ-
mental impact of fertilizer applications2. Plant nutrients in the agricultural
area should exist not only in sufficient levels, but also in balanced forms
for sustainable soil fertility and crop quality. However, variability in soil
properties causes uneven crop growth and decreases the effectiveness of
uniformly applied fertilizer on a field scale3. For example, phosphorus
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accumulations or losses in agricultural systems are affected by many site-
specific soil and management characteristics.

The economic benefits of phosphorus fertilization on crop production
are well known. However, excessive soil phosphorus is a potential risk for
environmental hazard. Crop uptake of fertilizer phosphorus per season varies
between 5 and 25 % of the amount applied, although subsequent crops4

take more up. Site-specific soil sampling methods and measurements can
help in minimizing of the environmental impacts of phosphorus with avoiding
excessive phosphorus fertilizer applications. Lauzon et al.5 have revealed
that in most cases, soil test variation maps based on 60 or 90 m grid soil
samples did not result in an increased ability to predict the soil test level at
a given location in the field. It was concluded that a grid spacing of 30 m or
less would be required to adequately assess the spatial variation of soil test
phosphorus. On the other hand, some methods such as electromagnetic
induction (EMI) were used to easily measure soil variability for precision
farming6. However, Webster7 and Mallants et al.8 emphasized that the problems
for intensive soil samplings depending on spatial variability could be
decreased by using package computer programs and jeoistatistical methods.
Hence, the development of these information systems based on site-specific
variability will help the managing of efficient use of phosphorus sources
for intensive agricultural areas. In recent years, a lot of research9-18 were
carried about prediction of soil nonlinear specials.

Artificial neural networks (ANN) are the computer programs which
are improved by the inspiration of brain physiology of human beings. ANN
is generally successful in issues such as model selection and classification,
function forecast, determination of optimum value and data classification.
In this study, generally non-linear soil properties have been modeled by
using ANN. The outputs of ANN model and the values of measurement
have been compared with the simulation results; it has been figured out that
ANN based modeling is a good alternative for other modeling methods.

EXPERIMENTAL

Artificial neural networks (ANN): Each neuron performs two functions
as shown in Fig. 3. The first is to sum all the inputs from lower layer based
on their weighing factors as given in eqn. 1. The second is to process this
sum by a nonlinear sigmoid function as shown in eqn. 2. The input and
output neurons may not contain nonlinear functions. The basic equations
describing the dynamics of each neuron are;
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where Wij weight between the jth neuron and the ith neuron in two adjacent
layers, θj threshold of the jth neuron, Oi output of the ith neuron, Oj output
of the jth neuron, f(.) sigmoid function.

A general structure of a multi-layer neural networks was shown (Fig. 1).
Such a neural network contains three layers: input layer, hidden layer(s)
and output layer. Each layer is composed of several neurons. The number
of neurons in the input and output layers depends on the system dynamics
and the desired accuracy. All the neurons in adjacent layers are interconnected.
The strength of the interconnection was determined19 by weighting vector
of neural networks.

 

Σi 
 
 f 

netj Oi Oj 

Fig. 1. A single neuron

Training of neural network:  The most common method of neural
networks training is back error propagation algorithm. The algorithm is
based on the gradient search technique that minimization process is done
by adjusting the weighting vector of the neural networks. Let the objective
function (E) could be write as;
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where Tpj is the target output of neuron j due to input pattern p. Opj is the
neural networks output of the same neuron and for the same pattern. Minimi-
zing eqn. 3 leads to a sequence of update of the weight vector. The weights
of the interconnections between two adjacent layers could be updated based
on the following formula.

)k(ijW∆α
)k(ijWδ

Eδη)k(ijW)1k(ijW ++=+ (4)

where k is the iteration number, η is the step size α is the momentum gain
and ∆Wij (k) is weight change based on the gradient of the cost function19-21.

An artificial neural network (ANN) based modeling of a tomato crop
area has been presented for simulation of spatial variability of available
phosphorus levels. For this aim, topsoil (0-20 cm) and subsoil (20-40 cm)
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samples based on 20 × 20 m grids were taken from the plots under the
tomato plants. The air-dried soils were screened to pass through a 2 mm
mesh. Plant samples were also collected from the same plots together with
soil samplings. In the soil samples, available phosphorus analysis was made
by the method of Olsen et al.22. Determinations23-26 were also made for
saturation per cent, CaCO3, pH, electrical conductivity23 and organic matter
contents for both topsoil and subsoil samples. Experimental data was subje-
cted to the statistical analysis using StatMost package program27. In the
experimental topsoils; saturation per cent was 46.45 %. Average value of
CaCO3 was 75.8 g kg-1, pH was 8.01, organic matter content was 3.21 %
and EC was 560 µmhos cm-1. In the subsoils; saturation per cent was 43.52
%. Average value of CaCO3 was 72.3 g kg-1, pH was 8.03, organic matter
content was 1.96 % and EC was 408 µmhos cm-1.

By the reference of the experimentally obtained values, Supervized
Learning method has been used for the modeling of mineral dispersion of
soil area28-31. The increase in complexity directly prolongs the learning pro-
cess and this could affect the performance of the structure in a negative
way. In ANN applications, there is no rule to find the most suitable layer
and the number of neurons. Generally the complexity of the system is
uncluttered by the increase in the number of hidden layers and the hidden
neurons. At the beginning of the study, the neural network with four layers,
which are input layer, hidden layers and output layer, is chosen as having.
By trial and error, it has found that the most suitable network structure for
the system is composed of one input layer, two hidden layers and one output
layer. The numbers of nodes for each layer are 2, 6, 6 and 1, respectively.
For the chosen ANN structure, two hidden layers (5-5 neurons) have been
used additionally to our input as east/north and output as P2O5. Fig. 2 shows
ANN model used for the modeling of P2O5 change of soil. A packet program
which can be used for the training of the systems with an input layer of 15
inputs and a output layer of maximum 10 outputs for the training of ANN
by using the C++ Program Language has been prepared.

East

North

First 
hidden layer

Second  
hidden layer

P2O5

Inputs
Output

Fig. 2. Modeling of soil P2O5 by ANN
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After the determination of the systems network structure, training of
network begins with determining learning coefficient which will be used for
the training, momentum coefficient and entering the numbers of data samples.

RESULTS AND DISCUSSION

The coefficient of variance (CV), kurtosis and skewness values for
site-specific phosphorus values of topsoils, subsoils and plants on the tomato
area were presented Table-1.

TABLE-1 
SPATIAL VARIABILITY OF SITE SPECIFIC P VALUES FOR TOPSOILS, 

SUBSOILS AND PLANTS ON THE TOMATO AREA 

Parameters Min. Max. Mean CV (%) Kurtosis Skewness 
Topsoil       
P, kg P2O5.da-1 13.59 44.73 27.23 28.17  0.1124  0.4103 
Subsoil       
P, kg P2O5.da-1 6.26 16.79 11.78 20.96 -0.0539 -0.0027 
Plant        
P, % 0.31 0.79 0.57 21.24 -0.4701 -0.1836 

 
The maximum CV value of 28.17 % was obtained for topsoil phosphorus,

while the CV value was 20.96 % for subsoil phosphorus. The available
phosphorus contents of topsoil were varied from 13.59 to 44.73 kg P2O5

da-1 and average value was 27.23 kg P2O5 da-1. For subsoil, the available
phosphorus contents were varied from 6.26 to 16.79 kg P2O5 da-1 and average
value was 11.78 kg P2O5 da-1. The findings showed that phosphorus values
were more variable in topsoils than in subsoils since the topsoils have been
frequently mixed with plowing activities and applied phosphorus fertilizer32.
Dikici and Gündogan33 have also found a high coefficient of variation (CV 31 %)
for Olsen's phosphorus values suggesting that there was a high phosphorus
variability within cotton field. On the other hand, the coefficient of variance
(CV), kurtosis and skewness values showed that variability occurred for
site-specific phosphorus values of the tomato plants. The CV value of 21.24 %
determined for phosphorus content of the plants. The values for phosphorus
contents of tomato plants were varied from 0.31 to 0.79 % and average
value was 0.57 %. Significant correlation, r = 0.42 and p < 0.03, was found
between site specific plant phosphorus uptake and soil available phosphorus
in the topsoil. It means that the plants have a higher spatial dependency of
topsoil available phosphorus.

Fig. 3. shows that ANN model is applicable for expressing the phosphorus
in the topsoil (a) three-dimensional maps of phosphorus and (b) contour
maps of site-specific phosphorus levels for in topsoil c) the obtained curve
of phosphorus in topsoil from calculated and simulated data.
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Fig. 3. ANN model is applicable for expressing the phosphorus in topsoil

In order to see the performance of ANN based P2O5 model, experi-
mental data curves have been compared with the curves obtained after the
ANN training. The obtained curves have been shown in Fig. 4a and b show
that the build up ANN model is applicable for expressing the P2O5 of the
soil.

0 5 10 15 20 2510

15

20

25

30

35

40

45

Number of data

P
O 2

5

            

P
O 2

5

0 5 10 15 20 25
6

8

10

12

14

16

18

Number of data

          a) Topsoil             b) Subsoil

Fig. 4. The obtained curves of ANN model is applicable for expressing the P2O5

of the soil (a) Topsoil (b) Subsoil
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Three-dimensional maps for topsoil and subsoil of the tomato area
also indicated a great spatial variability of site specific available P2O5 as
shown Fig. 5a and b. In general, experimental topsoil has a high and very
high level of site-specific available phosphorus amounts, meaning that available
phosphorus highly accumulated in topsoil. The results have revealed that
uniform phosphorus fertilizer managements based on an average soil phos-
phorus levels will result in increasing unequal soil phosphorus distribution
and unbalanced plant phosphorus consumption.
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Fig. 5.  Three-dimensional maps of available P2O5 in the soil, kg da-1

The contour maps for topsoil and subsoil of the tomato area also indicated
a great spatial variability of site specific available P2O5 as shown Fig. 6a
and b.

The findings clearly showed that the site specific phosphorus level in
the tomato soil was important factor for maximum phosphorus utilization
by the tomato plants. Thus, fertilization programme based on site-specific
phosphorus demands of the plants will increase phosphorus use efficiency
of the plants with proper phosphorus rates.
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Fig. 6. Contour maps of site specific P2O5 levels for topsoil and subsoil, kg da-1

For the determination of selected soil properties change of the simu-
lated area, a measurement method based on the measurement of minerals
of soil has been used. After the calculation of selected soil properties 0-80
m with 20 m periods to the North and to the East 0-80 m (20 m rise by
threes), the obtained values have been shown in Table-2.
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TABLE-2 
COMPARING OF SIMULATED AND MEASURED VALUES FOR  

SITE SPECIFIC SOIL P2O5 (kg da-1) LEVELS AND PLANT  
PHOSPHORUS CONTENTS (%) 

East 
(m) 

North 
(m) 

Simulated 
topsoil 
P2O5 

Measured 
topsoil 
P2O5 

Simulated 
subsoil 

P2O5 

Measured 
subsoil 

P2O5 

Simulated 
plant P 

Measured 
plant P 

0 0 28.709692 28.710001 12.435506 12.435402 0.539998 0.540000 
0 20 24.070064 04.070000 11.588206 11.588440 0.689991 0.690000 
0 40 33.979104 33.980000 04.169242 14.169184 0.729986 0.730000 
0 60 14.729519 14.730000 09.924180 09.924407 0.570004 0.570000 
0 80 24.530177 24.530001 12.325563 12.325795 0.480006 0.480000 
20 0 17.820139 17.820000 14.517877 14.517933 0.639965 0.640000 
20 20 26.540084 06.540001 12.854826 12.853901 0.530029 0.530000 
20 40 24.120779 24.120000 16.022445 16.022538 0.510009 0.510000 
20 60 18.828237 18.830000 06.237489 06.237629 0.439995 0.440000 
20 80 27.519676 27.519999 16.730277 16.730000 0.730000 0.730000 
40 0 29.649849 29.649999 13.402797 13.401936 0.720021 0.720000 
40 20 33.459265 33.460001 10.691941 10.691656 0.579992 0.580000 
40 40 27.630365 27.630000 11.917022 11.917261 0.389999 0.390000 
40 60 21.039585 21.040000 09.695712 09.695230 0.579997 0.580000 
40 80 34.519568 34.520000 12.703676 12.704437 0.600002 0.600000 
60 0 29.749341 29.749999 13.370838 13.372043 0.570008 0.570000 
60 20 22.949063 22.949999 11.558233 11.558547 0.309992 0.310000 
60 40 13.590268 13.590000 09.505576 09.505908 0.500005 0.500000 
60 60 24.060146 24.059999 02.335134 12.335760 0.430002 0.430000 
60 80 22.949477 22.949999 10.035177 10.034015 0.420004 0.420000 
80 0 30.720066 30.719999 08.808298 08.808410 0.729999 0.730000 
80 20 24.960018 24.960000 09.974921 09.974228 0.660000 0.660000 
80 40 44.727267 44.730000 14.369021 14.368470 0.610003 0.610000 
80 60 38.893899 38.889999 09.785264 09.784908 0.579999 0.580000 
80 80 40.888874 40.889999 08.519010 08.519446 0.790000 0.790000 

*Available phosphorus; high = 9-15 kg P2O5 da-1 and very high = 15 kg P2O5 da-1  

Conclusion

With the help of this developed NN model, it is intended to determine
the P2O5 of selected soil area properly. In order to see the performance of
ANN based P2O5 model, experimental data curves have been compared
with the curves obtained after the ANN training. After comparing the experi-
mental results with the recommended method, it is concluded that it shows
very realistic results. The results obtained from the simulation show that
the modeling which is formed for the P2O5 change is applicable. Simulations
results show very good agreement with measured results.
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