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Many researchers have studied the mechanical properties of carbon
nanotubes with various theoretical descriptions. There are still some
discrepancies which need to further explore the mechanical properties
of carbon nanotubes. The radial deformation is of significant interest in
the analysis of nanotube-structural systems. Thus, the variation of
mechanical properties was studied with tube diameter. In the present
work, attention is paid to provide a very simple approach to formulate
the radial deformation of single wall carbon nanotubes and derive in-plane
stiffness in the hoop direction Y and Poisson ratio vzθ of carbon nanotubes
under radial pressure. It means that both Y and vzθ are highly sensitive
to tube diameter and decrease exponentially with increasing tube diameter
but Y of zigzag is more sensitive to an increase in the tube diameter than
armchair. The present developed analytical modeling approach predicts
that Young modulus and Poisson ratio of single wall carbon nanotubes
varies from 0.1 to 0.5 TPa and 0.6 to 1.9, respectively.
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INTRODUCTION

The rapid expansion of contemporary nanotechnology simulates the development
of methods for characterization of carbon-based nanostructures1. These nanostructures
in particularly carbon nanotubes attracted rapidly an increasing attention of the
scientific community in the last decade for several reasons. It has played an enormous
role in the success of nanoelectronic device. Through experimental researches about
this new structure, scientists identified that this material has outstanding properties.
The unique electrical, thermal, mechanical properties causes many scientists to
investigate about this interesting material. Because of small size of this structure
and problems that exist in measurement of mechanical properties, theoretical methods
have improved more than experimental methods. It is now, well known that the
mechanical properties of carbon nanotube should be drastically modified. There-
fore, special experimental, analytical methods and computational tools are needed
to study the structure of carbon nanotube material for particular functionalities.
Theoretical studies revealed that the potential energy between carbon atoms in both
zigzag and armchair tubes should be optimized in order to solve the stress problem.



The most common classification of the carbon materials is based on the chemical
bonding of the carbon atoms (i.e. on the type of hybridization). Accordingly carbon
atoms with sp3-, sp2- and sp-hybridization compose the three major carbon allotropes
with integer degree of hybridization diamond, graphite and carbyne, respectively.
Of course, some other subgroups can be included carbon forms with a non-integer
degree of hybridization sp, the so-called intermediate carbon forms like closed-
shell carbon structures (2 < n < 3)1. A great number of novel interesting carbon
nanomaterials, e.g. carbon nanotubes belong to this subgroup.

Fig. 1. Graphen sheet and chiral vector of carbon nanotubes

Carbon nanotubes are tube-like structures that result from a special arrangement
of carbon atoms. These nanometer-wide tubular arrangements of sp2 orbital are
formed at 120 ºC to each other within a plane. A carbon nanotube is thereby formed
when one single layer of graphite is wrapped onto itself and the resulting edges
joined. The structure of a nanotube can be defined using a roll-up vector C(m,n) or
chirality that are named chiral vector.

Ch = na1 + ma2

where a1 and a2 are two unit vectors in a 2D graphite lattice 1 and n, m (0 < m < n)
are positive integers. Different types of carbon nanotubes are formed by choosing
the values of m and n. Three major categories of such nanotube structures can be
identified, m=n (armchair), m=0 or n=0 (zigzag) and m=n (chiral). Carbon nanotubes
can be further categorized of single-wall (SWCNT) and multi-wall (MWCNT)
nanotubes.

Many of researchers have pursued the analysis of carbon nanotubes by theore-
tical modeling. These models include atomistic and continuum models which can
be classified into classical molecular dynamic (MD), tight-binding molecular dynamic
(TBMD) and density functional theory (DFT). In general, any problem associated
with atomic motions can be simulated by these modeling, but due to enormous
computations, application of these modeling are limited to systems with a few
numbers of atoms that usually are short-lived phenomena2.
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Some researchers have attempted to characterize the elastic behaviour of carbon
nanotubes3-8. Kalamkarov9 is considered carbon nanotubes as a shell that placed
under pure tension and solve the asymptotic equations for them. He obtained elasti-
city moduli of SWCNT, 1.71 TPa. His results are still unable to give an appropriate
(regular) process for variation of Young modulus with diameter of carbon nanotubes.
Xiao et al.10 studied this elastic deformation under radial pressure by using the
analytical molecular structural mechanics model. They found that in-plane properties
are sensitive to the tube diameter at small diameters ranges and insensitive to tube
size at large diameters. Some others7,11 studied the elastic modulus carbon nanotubes
with different thickness.

Molecular dynamic simulation has been used for estimating the curvature strain
energy12-14. Zhang and Shen8 achieved the curvature strain energy versus strain for
two types armchair and zigzag under axial compression, radial pressure and torsion.
Mylvaganam and Zhang13 studied the deformation of carbon nanotubes under axial
load and found that Young modulus of zigzag 4.88, while it is 3.96 for armchair.
They assume all atoms except the boundary ones rigidly held were treated as thermostat
atoms as described by Zhou12.

In this paper, elastic buckling of zigzag and armchair SWCNT under radial
pressure is studied by a molecular mechanics model. It was assumed that the system
potential energy including energies associated with stretching and bond angle variation.
The harmonic potential system in which Xiao et al.10 considered has been modified
and found different behaviour of Y and νzθ versus tube diameter under radial pressure.
Both the Poisson's ratio and the surface Young's modulus in hoop direction are
sensitive to tube diameter and decrease exponentially.

MOLECULAR MECHANICS MODEL

There is a variety of ways to formulate the deformation of SWCNTs2,8,9. These
workers found different values for Young modulus and Poisson ratio. On the basis
of chiral vector, the diameter of nanotube is defined as

 nmmn
a3

D 22 ++
π

=

where the length of C-C bond, is 0.142 nm10. Here we just consider zigzag (m=0)
and armchair (n=m) nanotubes. Although the total potential energy should be in-
cluded bond stretching, bond angle variation, bond inversion, torsion, van der Waals
potential and electrostatic interaction. We suppose that only bond stretching and
bond angle variation of CNTs are predominate in the radial deformation. In contrast
with Xiao10 the potential energy is proposed as a Morse potential function rather
than harmonic potential function. Although the harmonic potential could be used
for describing the deformation of SWCNTs under radial pressure, however the
unlinear variations in bond angle and bond stretching indicate that harmonic potential
function is not appropriate to use for estimating Y and νzθ of carbon nanotubes.
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Instead, we present a simpler approach which include morse potential. Moreover,
Morse potential includes harmonic potential as well. On the way to this goal, several
new procedures and methods have been devised to fully describe this deformation.
The potential energy is thus given by

V = Vbond + Vangle

Vbond = De [(1 – e–β∆r)2 – 1] (1)

Vangle = 
2

1
kθ∆θ2 (1 + ks ∆θ4) (2)

where Vbond indicates the bond energy associated with bond stretch, Vangle is the
bond energy due to angle bending, r is the length of the C-C bond and θ is the angle
between the adjacent bonds. The constants used in eqns. 1 and 2 are [7] r0 = 0.139 nm,
θ0 = 2.094 rad, De = 6.03105 × 10-10 N.nm, β = 2.625 × 1010 m-1, kθ = 0.9 × 10-18 Nm/
rad2 and ks = 0.754 rad-4. Using the equation of force

θ
θ∂

∂
+

∂
∂

=∇= ˆV
r̂
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V
VF

We can write
Fbond = 2βDe e–β∆r (1 – e–β∆r)

Fangle = 
r

1
[kθ∆θ + 3kθks (∆θ)5]

Consider Young moduli or elasticity moduli which is the ratio of stress to strain.
It should be emphasized that the stress need not be as f/A, means stress on a

surface. In order to develop a new approach, we can use a hoop force which is force
per unit length of tube f/lθ instead. The advantage of this definition is that it is
independence of the properties of tube. Both Young moduli and Poisson ratio are key
factors in characterizing the mechanical properties of CNTs. This case is depicted
in Fig. 2, showing applied force and torque for studying mechanical properties of
SWCNTs.

b

b

a2f

f

f

Fig. 2. Unit structure of an armchair nanotube

The applied force direction is radial direction which demonstrates that the force
per unit length of tube i.e. f/lθ, should be used. When equilibrium is established on
bond b of armchair, then according to Fig. 2 we have
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Similarly for bond a, we have

f = βDe e−βδa (1–e−β∆a)

where φ, the torsion angle between planes b-b and b-a, is given by
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In present studies, we are using eqns. 3 through 5 to derive in-plane stiffness in
hoop direction mean Young moduli and Poisson ratio under radial pressure.

However, the equations involve some parameters which are not directly mea-
surable. We have tried to obtain more practical results by rewriting the equations
by exploiting the fact that the structural unit of an armchair tube must be of the
form as shown in Fig. 2.

From the geometry of armchair tube we have
Differentiating of eqn. 6
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where a=b, α = 2 π/3 and β = π - arc cos (0.5 cos (π/n)) where π/n is the angle between
bond a shown Fig. 2.

In order to illustrate this point, consider a cross section of an armchair tube and
extend this view to tube (n, n) would be 2n times of an angle π. By inserting eqn. 5
in eqn. 3, the relation of ∆a and ∆b can be found.

Hoop force of an armchair tube is
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The hoop strain eθ and axial strain ez can be written for structural unit as follow
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Similarly, refer to Fig. 3 for zigzag type structure, one can find
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Fig. 3. Unit structure of a zigzag nanotube

Assuming that the applied force will produce no change in the a-bond length,
i.e. the bond length is unchanged. From Fig. 3.
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Combining eqn. 11 and 12, ∆β and ∆α can be determined. Therefore, hoop
force will be
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The strains is also given by
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Young moduli and Poisson ratio are obtained.
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The variation of this factors is seen in Figs. 4 and 5.

         

Fig. 4. Variation of Young modulus with Fig. 5. Variation of Poisson ratio with nanotube
   nanotube diameter under Morse potential            diameter under Morse potential
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RESULTS AND DISCUSSION

Some results are shown in Figs. 4 and 5. The curves indicate that both Young
modulus and Poisson ratio are sensitive to tube diameter.These parameters, Young
modulus and Poisson ratio of armchair are relatively higher than those zigzag type
under the same conditions. Moreover, Y and ν for both armchair and zigzag types
decrease exponentially with increasing tube diameter. Of course the thickness of
tube wall is neglected.These findings are not in agreement with the findings by
Xiao10 where harmonic potentials were considered as B-C potentials. As Fig. 4
shows that for identical diameter, Young moduli of armchair type is more than
zigzag type because force applying on tube align tangent and the most of bonds of
armchair type are in tangential direction. This makes armchair type for identical
force, represent high resistance against radial deformation than zigzag. For an identical
force, zigzag type is also deformed in smaller diameters than armchair. This result
is in agreement to where the curvature stress vs. strain and armchair placed up to
zigzag6.

It is observed for the thinner tubes (less than 1 nm), the interaction between
carbon atoms wave functions pushed them away, which causes a more stable structure
in this case. As shown in Figs. 4 and 5, both Y and ν decrease towards thicker tubes.
A different path in modelling of the deformation of CNT structure under radial
pressure is to consider an analytical molecular dynamics methods, where more
fundamental physical principles and details may be taken into account. These effort
point in the direction of describing the possible simple paths and estimating the
Young modulus and Poisson ratio. But this method is desirable, because the other
calculations demand an enormous amount of memory and computational time and
to make things finite some cutoff and approximations are necessary. Nevertheless
the present method provides more relevant information about the details of Y and ν.

Using harmonic potential and doing the similar calculations, the Young moduli
and Poisson ratio tendency are similar (Figs. 6 and 7). But as shown in Figs. 4 and 5,
the decay ratios are less than those for harmonic potentials as shown in Figs. 6 and 7.

    

Fig. 6. Variation of Young moduli with nanotube    Fig. 7. Variation of Poisson ratio with nanotube
   diameter under harmonic potential diameter under harmonic potential
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Conclusion

For systematic studies of the deformation of SWCNTs, we use an analytical
method, in which the Morse potential is applied instead of harmonic potential.
These studies clearly demonstrate that CNTs change their mechanical properties
under radial pressure compared with their normal state. Thus the deformation of
CNTs structure gives rise to Young modulus and Poisson ratio. The present method
which is easy to work with compared to, for example, systems used for demons-
trating the shell model9 or DFT theory15. The results show that the present model is
capable of describing the stability of ultrathin SWCNTs. However, this description
is semi-quantitative only. The estimation of more precise values for the parameters
as Y and ν require for more experimental data than those presently available15-22.

REFERENCES

1. P. Morgen, A. Bahari and K. Pedreson, Functional Properties of Nanostructured Materials, Vol.
223 (2006) Springer, ISBN-13 978-1- 4020- 4594-3.

2. X. Chen, X. Wang and G.G. Sheng, Phys. Scr., 75, 455 (2007).
3. C.Q. Ru, Phys. Rev. B, 62, 9973 (2000).
4. K. Dong and X. Wang, Arch. Appl. Mechanics, 77, 8 (2007).
5. C.L. Zhang and H.S. Shen, Phys. Rev. B, 75, 045408 (2007).
6. T. Natsuki and M. Endo, Carbon, 42, 2147 (2004).
7. J.B. Wang, X. Guo, H.W. Zhang, L. Wang and J.B. Liao, Phys. Rev. B, 73, 115428 (2006).
8. Y. Wu, X. Zhang, A.Y.T. Leung and W. Zhong, Thin. Wall. Struct., 44, 667 (2006).
9. A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu and M.N. Ghasemi-Nejhad,

J. Solids. Struct. 43, 6832 (2006).
10. J.R. Xiao, S.L. Lopatnikov, B.A. Gamaa and J.W. Gille-spie,  Physica E: Low-dimensional Sys.

and Nanostruct., 39, 230 (2007).
11. T. Natsuki, K. Tantrakarn and M. Endo, Carbon, 42, 39 (2004).
12. L. Zhou and S.Q. Shi, Compos. Mater. Sci., 23, 166 (2002).
13. K. Mylvaganam and L.C. Zhang, Carbon, 42, 2025 (2004).
14. Y. Wang, X.X. Wang, X.G. Ni and H.A. Wu, Comput. Mater. Sci., 32, 141 (2005).
15. R.R. Zope and B.I. Dunlap, Fully Analytic Implementation of Density Functional Theory for

Efficient Calculations on Large Molecules, arXiv:cond-mat/0610060 v1 3 Oct 2006.
16. A.Bahari, N. Mirnia and A. Pahlavan, World Appl. Sci. J., 4, 261 (2008).
17. K. Navi, R. Zabihi, M. Haghparast and T. Nikobin, World Appl. Sci. J., 4, 289 (2008).
18. B. Bahmani-Firouzi, E. Jamshidpour and T. Niknam, World Appl. Sci. J., 4, 326 (2008).
19. K. Navi, V. Foroutan, B. Mazloomnejad, Sh. Bahrololoumi, O. Hashemipour and M. Haghparast,

World Appl. Sci. J., 4, 142 (2008).
20. I. Aigbedion, World Appl. Sci. J., 2, 77 (2007).
21. M.M. Abd El-Raheem, World Appl. Sci. J., 2, 204 (2007).
22. P. Asadi and K. Navi, World Appl. Sci. J., 2, 341 (2007).

(Received: 27 June 2008;          Accepted: 15 October 2008)           AJC-6953

1608  Bahari et al. Asian J. Chem.


