Asian Journal of Chemistry

Vol. 21, No. 2 (2009), 1490-1494

Synthesis and Antiulcer Activity of 2-[{5-Substituted-1*H*benzo(d)imidazol-2-yl sulfinyl}methyl]-3-substituted Phenyl Quinazoline-4(3*H*)-one Derivatives

AVINASH PATIL^{*}, SWASTIKA GANGULY[†] and SANJAY SURANA[‡] Department of Pharmaceutical Chemistry, Smt. S.S. Patil College of Pharmacy, Chopda-425 107, India E-mail: avinashay_princ@rediffmail.com

The synthesis of 2-[{5-substituted-1*H*-benzo(d)imidazol-2-yl sulfinyl}methyl]-3-substituted phenyl quinazoline-4(3*H*)-one derivatives were carried out. Anthranilic acid was treated with chloroacetylchloride to give *n*-chloroacetyl anthranilic acid (1). 1 was then treated with amines to give 2-chloromethyl-3-aryl-4(3*H*)-one-quinazoline (2). 2 was condensed with 2-mercapto 5-substituted benzimidazoles 3(a-g), 4(a-g) and 5(a-g) and finally oxidation of sulfur was carried out to give 6(a-g), 7(a-g) and 8(a-g). All compounds were characterized by their spectral studies. Antiulcer activities of 6(a-g), 7(a-g) and 8(a-g) were studied by pylorous ligation induced ulcer models in rats.

Key Words: Synthesis, 4-Quinazolinone, Benzimidazole, Antiulcer activity.

INTRODUCTION

The presence of acid is a fundamental factor in the pathogenesis of gastric and duodenal ulcers, reflux-esophagitis and nonsteroidal antiinflammatory drug-induced lesions¹. Such diseases seem to have prominent share in health disorder in current scenario of globalization and are treated by blocking acid secretion in stomach. A series of benzimidazole derivatives have exhibited proven antiulcer activity as potential inhibitors of H⁺/K⁺ATPase. The enzyme H⁺K⁺-ATPase is responsible for gastric acid production and is located in the secretary membranes of the parietal cell²⁻⁷. In this paper, some new derivatives of benzimidazole by combination of the quinazoline nucleus with different substituents at the 3-N of quinazoline with benzimidazole ring (**6-8**) and their antiulcer activity have been reported.

The structures of the starting compounds and novel benzimidazole derivatives (6-8) are given in **Scheme-I**.

[†]Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi-835 215, India.

[‡]R.C. Patel College of Pharmacy, Shirpur-425 405, India.

Vol. 21, No. 2 (2009) Synthesis & Antiulcer Activity of Substituted Phenyl Quinazoline-4(3H)-one 1491

EXPERIMENTAL

The starting compounds N-chloroacetyl anthranilic acid^{8,9} (1), 2-chloromethyl -3-aryl-4(3*H*)-one-quinazoline^{8,9} (**2a-g**) and 2-[{5-substituted-1*H*-benzo(d)imidazol-2-yl thio}methyl]-3-substituted phenyl quinazoline-4(3*H*)-one derivatives⁵ (**3a-g**), (**4a-g**) and (**5a-g**) were prepared according to the literature. Purity of the compounds was checked by TLC method. Melting points were determined with Lab line melting point apparatus and are uncorrected. Infrared spectra were recorded on a Shimadzu 8400-s spectrophotometer. Proton NMR spectra were recorded on a Varion 300 MHz NMR spectrometer (DMSO- d_6 , δ ppm). GCMS spectra were recorded on Shimadzu QP-5050 spectrophotometer.

1492 Patil et al.

Asian J. Chem.

Synthesis of 2-[{1*H*-benzo(d)imidazol-2-yl sulfinyl]methyl}-3-phenyl quinazoline-4(3*H*)-one (6a): A solution of hydrogen peroxide 1.43 mL (0.015 mol) in dichloromethane is added in 2-[{1*H*-benzo(d)imidazol-2-yl thio}methyl]-3-phenyl quinazoline-4(3*H*)-one (0.01 mol) and stirred for 8 to 10 h. Solvent was evaporated and residue was treated with water to give solid, which was recrystallized from ethanol. IR (KBr, v_{max} , cm⁻¹): 3157 (NH), 3035 (CH), 2920 (CH), 1647 (C=O), 1590 (C= N), 1560 (C-N), 1014 (S=O) and 742 (C-S-C). ¹H NMR: (DMSO-*d*₆) δ : 7.8 (d, 1H, quinoline-H-4), 7.4 (dd, 1H, quinoline-H-5), 7.4 (dd, 1H, quinoline-H-6), 7.3 (d, 1H, benzimidazole-H-7), 7.5 (d, 3H, N-C₆H₅-H-2,4,6), 6.2 (d, 2H, N-C₆H₅-H-3,5), 7.6 (d, 1H, benzimidazole-H-7), 7.4 (d, 1H, benzimidazole-H-6), 7.3 (d, 1H, benzimidazole-H-7), 8 (m/z) 400 [M]⁺.

The above reaction was extended to synthesize compounds **6(b-g)**, **7(a-g)** and **8(a-g)** crystallized from ethanol. The physical data are presented in Table-2.

		N ~ N_	R ₁						
		CH2-S-							
		N							
Compd.	R	R_	m.p. (°C)	Yield (%)					
<u>3a</u>	Н	H	128	48					
3b	CH ₃	Н	123	45					
3c	COCH ₃	Н	131	52					
3d	OCH ₃	Н	132	38					
3e	OC_2H_5	Н	136	40					
3f	Br	Н	161	45					
3g	Cl	Н	152	57					
4 a	Н	OCH ₃	125	38					
4 b	CH_3	OCH ₃	120	48					
4 c	COCH ₃	OCH ₃	132	42					
4d	OCH ₃	OCH ₃	135	42					
4 e	OC_2H_5	OCH_3	128	35					
4f	Br	OCH ₃	145	50					
4 g	Cl	CH_3	148	52					
5a	Н	$OCHF_2$	141	55					
5b	CH ₃	$OCHF_2$	136	41					
5c	COCH ₃	$OCHF_2$	148	52					
5d	OCH ₃	$OCHF_2$	142	40					
5e	OC_2H_5	$OCHF_2$	130	45					
5f	Br	$OCHF_2$	148	44					
5g	Cl	OCHF ₂	151	46					

TABLE-1 PHYSICAL DATA OF BENZIMIDAZOLES (3-5) O Vol. 21, No. 2 (2009) Synthesis & Antiulcer Activity of Substituted Phenyl Quinazoline-4(3H)-one 1493

TABLE-2

PHYSICAL AND ANTIULCER ACTIVITY DATA OF 2-[{5-SUBSTITUTED-1*H*-BENZO (D) IMIDAZOL-2-YL SULFINYL}METHYL]-3-SUBSTITUTED PHENYL QUINAZOLINE-4(3*H*)-ONE DERIVATIVES (**6-8**)

Compd.	R	R ₁	m.p.	Yield	Ulcer index ±	Ulcer index ± SEM
			(°Ċ)	(%)	SEM (10 mg)	(30 mg)
6a	Н	Н	135	45	$2.167 \pm 0.3801 ^{**}$	$1.333 \pm 0.2108^{***}$
6b	CH ₃	Н	130	40	$2.167 \pm 0.2108^{**}$	$1.750 \pm 0.3096 *$
6c	COCH ₃	Н	138	48	$2.667 \pm 0.3333^*$	$2.000 \pm 0.1826^{***}$
6d	OCH ₃	Η	141	35	$2.417 \pm 0.5231*$	$1.833 \pm 0.3073 *$
6e	OC_2H_5	Н	140	46	$2.333 \pm 0.2789 **$	$1.833 \pm 0.2472^{***}$
6f	Br	Н	168	41	$2.833 \pm 0.2472*$	$2.250 \pm 0.2814 **$
6g	Cl	Н	159	42	$2.833 \pm 0.2472*$	$2.083 \pm 0.2713^*$
7a	Η	OCH ₃	127	35	$1.750 \pm 0.4233^{**}$	$1.250 \pm 0.1708^{***}$
7b	CH ₃	OCH ₃	124	45	$1.833 \pm 0.2108^{***}$	$1.500 \pm 0.1800^{***}$
7c	COCH ₃	OCH ₃	137	40	$2.750 \pm 0.4233^*$	$2.250 \pm 0.2500 **$
7d	OCH ₃	OCH ₃	139	38	$2.000 \pm 0.2582^{**}$	$1.417 \pm 0.2007^{***}$
7e	OC_2H_5	OCH ₃	133	42	$2.330 \pm 0.3073 **$	$1.500 \pm 0.2887^{***}$
7f	Br	OCH ₃	149	42	$2.667 \pm 0.3073 *$	$2.000 \pm 0.2582*$
7g	Cl	CH ₃	154	46	$2.167 \pm 0.2472^{**}$	$1.667 \pm 0.1667^{***}$
8a	Η	$OCHF_2$	145	42	$1.660 \pm 0.3801^{***}$	$1.250 \pm 0.2141^{***}$
8b	CH ₃	$OCHF_2$	130	40	$1.833 \pm 0.3073^{***}$	$1.250 \pm 0.1708^{***}$
8c	COCH ₃	$OCHF_2$	152	48	$2.417 \pm 0.4167 *$	$1.833 \pm 0.1667 {***}$
8d	OCH ₃	$OCHF_2$	144	38	$1.500 \pm 0.2887^{***}$	$1.000 \pm 0.1826^{***}$
8e	OC_2H_5	$OCHF_2$	134	38	$1.917 \pm 0.2386^{**}$	$1.500 \pm 0.3416^{***}$
8f	Br	$OCHF_2$	153	42	$2.667 \pm 0.2472^*$	$2.000 \pm 0.3416^{**}$
8g	Cl	OCHF ₂	154	43	$2.333 \pm 0.2108^{**}$	$1.667 \pm 0.1054^{***}$
Omeprazole					$0.500 \pm 0.28^{***}$	$0.000 \pm 0.0000 ***$
	Control				3.5 ± 0.28	

n = 6, Values are expressed as mean \pm SEM.

*p < 0.1 compared to control group (Student's t test).

**p < 0.01 compared to control group (Student's t test).

***p < 0.001 compared to control group (Student's t test).

RESULTS AND DISCUSSION

The synthesis of 2-[$\{5$ -substituted-1*H*-benzo(d)imidazol-2-yl sulfinyl $\}$ methyl]-3-substituted phenyl quinazoline-4(3*H*)-one derivatives **6**, **7** and **8** were carried out. N-Chloroacetyl anthranilic acid **1** and **2**-chloromethyl, 3-substituted aryl, 4(3*H*)-one quinazoline of type **2** were prepared according to literature^{8,9}. **2** was then condensed with 2-mercapto 5-substituted benzimidazoles of type **3**, **4** and **5** following the 1494 Patil et al.

Asian J. Chem.

method reported in literature⁵. Finally oxidation of sulfur in the compounds of type **3**, **4** and **5** was carried out to give compounds of type **6**, **7** and **8**. All compounds were characterized by their spectral studies. IR spectra of compound showed expected bands for the different functional groups. Quinazoline ring showed strong band at 1668 cm⁻¹ indicating the presence of an

group. Bands at 742 and 1014 were observed which were attributed to C-S-C and S=O vibration, respectively. ¹H NMR spectra of compound **6-8(a-g)** exhibited a singlet at 5.2 and 14.1 integrating for two and one protons, respectively and assigned to a methylene of the chain (-CH₂-S--) and N-H of benzimidazole. Other signals appeared in the aromatic region ranging from 6.2 to 7.8 integrating for the protons of quinazoline, aryl and benzimidazole nucleus.

The newly synthesized compounds **6-8(a-g)** in different doses were screened for antiulcer activity by pylorus ligation in shay rat method using omeprazole as standard¹⁰. At doses of 30 mg/kg oral administration in rats most of the compounds showed antiulcer activity. **7a**, **7b**, **8a**, **8b**, **8d** and **8e** showed highest activity at the doses 10 mg/kg after per oral administration in rat. However, none of the compounds had greater activity than omeprazole. It was concluded that difluromethoxy compounds showed maximum activity.

ACKNOWLEDGEMENTS

The authors are thankful to Dr.S.B.Wagh, Professor, N.D.M.V.P'S College of Pharmacy Nasik for helping in spectral analysis, as well as to Science & Technology Park affiliated to University of Pune for providing the NMR & Mass spectrometry facility for carrying out the research work.

REFERENCES

- 1. D. Carcanague, Y.K. Shue, M.A. Wuonola, M.U. Nickelsen, C. Joubran, J.K. Abedi, J. Jones and T.C. Kuhler, *J. Med. Chem.*, **45**, 4300 (2002).
- 2 P. Lindberg, P. Nordberg, T. Alminger, A. Bradstrom and B. Wallmark, J. Med. Chem., 29, 1327 (1986).
- 3 R.J. Ife, C.A. Dyke, D.J. Keeling, E. Meemam, M.L. Meesoon, M.E. Parson, C.A. Price, C.J. Theobald and A.H. Underwood, *J. Med. Chem.*, **32**, 1970 (1989).
- 4 M. Uchida, M. Chihiro, S. Morita, H. Yamashita, K. Yamasaki, T. Kanbe, Y. Yabuuchi and K. Nakagawa, *Chem. Pharm. Bull.*, 38, 1575 (1990).
- 5 S. Hiroshi, T. Koji, K. Akito, I. Yasuhiro, K. Isami, K. Asyoshi, K. Mikiko and S. Makota, *Chem. Pharm. Bull.*, **43**, 166 (1995).
- 6 J.C. Sih, W.B. Im, A. Robert, D.R. Graber and D.P. Blakeman, J. Med. Chem., 34, 1049 (1991).
- 7 B. Kohl, E. Sturm, J.S. Bilfinger, W.A. Simon, U. Kruger, H. Schaefer, G. Rainer, V. Figala and K. Klemm, *J. Med. Chem.*, **35**, 1049 (1992).
- 8 V. Murugan, N.P. Padmavathy, G.V.S. Ramasarma, S.V. Sharma and B. Suresh, *Indian J. Heterocycl. Chem.*, **13**, 143 (2003).
- 9 S.R. Pattan, V.V.K. Reddy, F.V. Manvi, B.G. Desai and A.R. Bhat, Indian J. Chem., 45B, 1778 (2006).
- 10 H.G. Vogel, Drug Discovery and Evaluation, Springer-Verlag, Berlin Heidelberg, edn. 2, p. 825 (2002).

(*Received*: 28 February 2008; *Accepted*: 8 October 2008) AJC-6935