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Mathematical modelling for reduction in concentration of pollutant
propylene in exhaust gas is carried out using catalytic converter. The
performance of catalytic converters is highly dependent on its properties
like cell density, catalytic surface area per unit reactor volume and length
of the converter. The effect of varying these physical parameters on the
conversion of propylene is analyzed.
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INTRODUCTION

At present monolithic converters are extensively used in pollution control
applications, most notably as catalytic converters in automobile after-treatment of
exhaust gases, where high flow rates and low pressure are the main requirements.
In addition to pollution control applications there is also an increasing interest in
the use of such reactors as combustion chambers1.

Modelling plays an important part in development of catalytic converters. The
original contributor for development of models for catalytic converter was Rutherford
Aris2. The experimental optimization based on engine bench and vehicle tests are
extremely expensive and time-consuming as compared to modelling3. Numerical
simulations help reduce the number of experiments and allow for interpreting in
detail effect of some parameters otherwise neglected4,5. There are many challenges
that the developer of a mathematical model has to face. These challenges include
lack of adequate kinetic data for different types of catalysts6.

The simplest and most common approach is a one channel model, which is
assumed to be representative of the whole monolith. One-dimensional model predicts
the monolith performance quite accurately for cold start conditions and requires
about one-tenth computing time of the two-dimensional model7.

A one-dimensional model is proposed to bring about the reduction of hydro-
carbon propylene taking into account both gaseous as well as catalytic reactions
occurring in the converter. The performance of a converter depends upon the combined
effect of heat transfer, mass transfer and chemical reactions. The mass and energy



balance equations for gas phase form a set of ordinary differential equations (ODEs)
where as the energy balance equation for the solid catalyst temperature is partial
differential equation (PDE). Results obtained show the effect of changing cell density,
length of converter and catalyst loading on conversion of propylene.

The oxidation of propylene a fast oxidizing hydrocarbon8 is a highly exothermic
reaction as is given by:

C3H6 + 4.5O2 —→ 3CO2 + 3H2O

This reaction can take place in both homogenous and heterogeneous phases9 as
shown in Table-1. Platinum suspended in aluminia washcoat is used as catalyst for
the catalytic reactions is shown in Fig. 1.
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Fig. 1. Reaction in a monolith channel

ONE-DIMENSIONAL MODEL

In the one-dimensional model only axial gradients are considered for gas concen-
tration, gas temperature and catalyst temperature.

Some assumptions made during modeling include:
• Negligible axial diffusion in gas phase.
• Monolith is cylindrical with circular cross-section channels. Non-uniform flow

distribution inside the converter is neglected, as one single channel represents the
entire monolith.
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• Heat released by the catalytic reactions inside the washcoat was totally trans-
ported to the gas phase by convection.

• Heat transfer by radiation within channels and also heat exchange between
the substrate and the surroundings at both inlet and outlet faces of the monolith was
neglected.

At quasi steady state:

0
t

Cg =
∂

∂
 and 0

t

Tg =
∂

∂
(1)

Mass balance in gas phase:
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Initial conditions:

( ) 0
gg Ct,0C = (entering gas concentration all time) (6)

( ) 0
gg Tt,0T = (entering gas temperature all time) (7)

( ) 0
ss T0,xT = (solid catalyst temperature at the start)  (8)

Boundary conditions:

at ( ) 0x/T,0x s =∂∂=  (lagging solid catalyst at entry) (9)

at ( ) 0x/T,Lx s =∂∂=  (lagging solid catalyst at exit)  (10)

Eqns. 2 to 10 are made dimensionless using the following expressions:
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Dimensionless equation for combined mass balance becomes:
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Dimensionless equation for energy balance for gas phase:
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Dimensionless equation for energy balance for solid phase:
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where, χ, w, θ, φ, σ, ψ, γ, α, and δ are dimensionless numbers as shown in Table-2.

TABLE-2 
DIMENSIONLESS NUMBERS  
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Dimensionless initial conditions:
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Dimensionless boundary conditions:
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Eqns. 12 and 13 are ODEs and eqn. 14 is a PDE.
Numerical scheme: Eqns. 12-14 are all coupled; hence they are solved at the

same time. The time derivative term does not exist in the ODEs but is present in the
PDE. The ODEs are solved using Runge-Kutta method of fourth order and the PDE
by backward implicit scheme. Effect of grid sizes has been studied.
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RESULTS AND DISCUSSION

Results are derived for variation of propylene concentration with time for dif-
ferent cell density, catalyst loading and length of the converter. Exhaust gas propy-
lene (1900 ppm) at 390 ºC undergoes oxidation reaction in the converter (initially
at 45 ºC). The computations are stopped when propylene concentration decrease
beyond 0.2000.

Fig. 2 shows the variation of exit concentration of propylene with time by vary-
ing the cell density. At dimensionless time 6.00 the concentrations of propylene are
0.9832, 0.9179, 0.8576 and 0.7293 for cell densities 16, 62, 93 and 155 cells/cm2.
At dimensionless time 7.50 the concentrations of propylene are 0.9631, 0.7872,
0.5942 and 0.2036, respectively for cell densities 16, 62, 93 and 155 cells/cm2.
Increasing the cell density of the converter increases its surface area available for
the catalytic reactions. More the surface area available faster would be the reaction
and hence more would be the conversion.
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Fig. 2. Exit propylene gas concentration variation with time for different values of
cell density

Fig. 3 shows the effect of varying the catalyst loading ‘a’ in the converter on the
exit concentration of propylene gas in the converter. For this study standard loading
‘a’ is taken as 268 cm2 Pt/cm3 reactor. At dimensionless time 4.00 the concentra-
tions are 0.9730, 0.9870, 0.9936 and 0.9968 for catalyst loading represented by 8a,
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4a, 2a and a, respectively showing almost similar values of concentration of propy-
lene. However with increase of time appreciable difference is observed in the val-
ues of propylene concentrations, the fastest conversion of propylene occurring at
highest value of catalyst loading. At time 8.00 the propylene concentrations are
0.3759, 0.8296, 0.9346 and 0.9706 and at time 8.30 the concentrations are 0.2086,
0.7953, 0.9250 and 0.9672, respectively for catalyst loading represented by 8a, 4a,
2a and a. Results indicate more conversion occours as time increases and the con-
version is faster in case of higher catalyst loading due to increased rate of catalytic
reactions.
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Fig. 3. Exit propylene gas concentration variation with time for different values of
catalyst loading

Fig. 4 shows the effect of length of the converter on conversion of propylene.
At dimensionless axial length of 0.3, 0.5, 0.7 and 1.00 the concentration of propy-
lene are 0.8719, 0.8038, 0.7479 and 0.6786 at time 9.0, respectively. At dimension-
less axial length of 0.3, 0.5, 0.7 and 1.00 the concentration of propylene are 0.4989,
0.3661, 0.2915 and 0.2221 for dimensionless time 10.3, respectively. Shorter lengths
result in lesser conversion. So the results indicate that increasing the length in-
creases the residence time in the converter and hence more conversion of propylene
takes place.
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Fig. 4. Effect of converter length on propylene gas concentration with time

Nomenclature

a Catalytic surface area per unit reactor volume (cm2 cm-3)
b/a ratio of stoichometric coefficients for oxygen and propylene.
C Concentration of the propylene (gmol cm-3)
Cp Specific heat (cal g-1 K-1)
d Hydraulic diameter (cm)
Ecat Activation energy for the catalytic reaction (cal gmol-1)
Ehomo Activation energy for the homogenous reaction (cal gmol-1)
h Heat transfer coefficient (cal cm-2 s-1 K-1)
-∆H Heat of reaction (cal gmol-1)
kg Mass transfer coefficient (cm s-1)
kcat Rate constant for catalytic reaction (cm s-1)
khomo Rate constant for homogenous reaction (cm3 gmol-1 s-1 c)
L Length of monolith (cm)
M Ratio of incoming oxygen and propylene.
R Gas constant (cal gmol-1 K-1)
S Geometric surface area per unit reactor volume (cm2 cm-3)
T Temperature (K)
t Time (s)
v Gas velocity (cm s-1)
x Axial coordinates (cm)
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z Dimensionless axial coordinates
λ Thermal conductivity (cal cm-1 s-1 K-1)
ρ Density (g cm-3)

Superscript:

o Initial conditions
' Dimensionless quantities

Subscript:

s Solid
g Gas
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