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The Schultz polynomial, S(G,x), of a molecular graph G has the
property that its first derivative at x=1 is equal to the Schultz index of
graph. Ivan Gutman discovered that in the case of G is a tree, S(G,x),
has closely related to the Wiener polynomial of G. In this paper, we
find the exact expression for Schultz polynomial of TUHC6 [2p; q], the
zigzag polyhex nanotubes, and obtain a relation between Schultz and
Wiener polynomials of TUHC6 [2p; q].
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INTRODUCTION

Topological indices are numerical descriptors that are derived from molecular
graphs of chemical compounds. The Wiener index is the oldest topological indices.
In 1947 chemist Harold Wiener1 developed the most widely known topological
descriptor, the Wiener index and used it to determine physical properties of types of
alkanes known as paraffins. Numerous chemical applications of Wiener index are
reported and its mathematical properties are well understood. In the chemical language,
the Wiener index is equal to the sum of all shortest carbon carbon bond paths in a
molecule. In a graph theoretical language, the Wiener index is equal to the count of
all shortest distances in a graph. For a thorough survey in this topic we encourage
the reader to consult the reported works2-4.

Haruo Hosoya5 introduced a distance-based polynomial, that he called it the
Wiener polynomial, related to each connected graph G as:

∑ ≠∈= }.vu ),G(Vv,u  : x{)x,G(H )v,u(d
2
1

The first derivative of H(G,x) at x = 1 is equal to Wiener index of G.
Schultz6 introduced the following topological index (Schultz index)

},vu ),G(Vv,u:)v,u(d))vdeg()u{(deg()G(S 2
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where deg(u) is degree of vertex u, i.e. the number of the vertices joining to the
vertex u.

These indices have many chemical applications7,8.
Similar to Hosoya, Gutman introduced new polynomial
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2
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that the first its derivative at x = 1 is equal to the Schultz index9. He obtained some
relationships between this polynomial and Wiener polynomial of trees. Sen-Peng
et al.10 also did similar work for hexagonal chains.

RESULTS AND DISCUSSION

In 1991 Iijima11 discovered carbon nanotubes as multi walled structures. Carbon
nanotubes show remarkable mechanical properties. Experimental studies have shown
that they belong to the stiffest and elastic known materials. These mechanical charact-
eristics clearly predestinate nanotubes for advanced composites. Diudea12-16 was
the first chemist which considered the problem of computing topological indices of
nanostructures. Recently computing topological indices of nanostructures has been
the object of many papers17-27.

In this paper, we give exact expression for Schultz polynomial of TUHC6 [2p; q],
zigzag polyhex nanotube (Fig. 1) and obtain a relation between Schultz and Wiener
polynomials of TUHC6 [2p; q].

Fig. 1. A TUHC6 [2p; q] nanotube

EXPERIMENTAL

Throughout this paper G: = TUHC [2p; q], (Fig. 1), denotes an arbitrary zig-zag
polyhex nanotube in terms of the circumference p and the length q. We also choose
a coordinate label for vertices of TUHC [2p; q], as shown in Fig. 2. At first we give
an important result on G.

Result 1: For a white vertex of level 0 we have
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Fig. 2. A zig-zag polyhex nanotube lattice with p=8 and q=6

and for a black vertex of level 0 we have
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Proof:  We compute )x(bk . It suffices to consider x01. For other blacks vertices
the argument is similar. At first note that the lattice is symmetric (with respect to
the line joining x01 to x11). We distinguish three cases:

Case 1: k ≥ p and k is even.  In this case for j, where 1 ≤ j ≤ p + 1, we have



 −

=
odd  is  j  if 2k        

even  is  j  if    1k2
)x,x(d kj01

and obtain p vertices having distance 2k-1 from x01 and p vertices having 2k distance
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Case 2: k ≥ p and k is odd.   In this case for j, where 1 ≤ j ≤ p + 1, we have
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and we obtain p vertices having distance 2k-1 from x01, and p vertices having 2k
distance from x01. So
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Case 3: k < p. For all p + 1 ≤ j and j > k + 1,
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Thus the summation of )x,x(d kj01x ’s (for all j’s such that p + 1 ≤ j and j > k + 1)

and symmetric of kjx ’s is
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By considering these vertices and their symmetric we obtain k+1 vertices having
distance 2k and k vertices having 2k-1 distance from x01. Therefore the summation

of )x,x(d kj01x ’s (for all j’s such that 1 ≤ j ≤ k + 1) and symmetric of kjx ’s is
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In a similar manner we can compute wk(x).
Result 2:
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Proof: By Result 1, we have
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Thus
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The proof of (b) is similar.

For a vertex u of graph G we let )x,v(dG  or sometimes )x,v(d , be

∑
∈
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G x)x,u(d

.

By this notation we have
Result 3:  If 0 ≤ j ≤ q – 1 be an odd number, then
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Proof: First suppose j = 1. We consider the tube that can be built up from two
halves collapsing at level 1. The bottom part is the graph G1  = TUHC6[2p; q-1] and
we can consider x11 as one of the white edges in the first row of the graph G1.
According to Result 2, we have
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The top part is the graph TUHC6[2p; q-1]= 1Ĝ and level 1 of graph G is the first

its row and x11 is such a black vertex of 1Ĝ . Therefore by Result 2, 
1Ĝ
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and such as it. Similarly for x12 we can see that
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By repetition of this argument we obtain the result.
Result 4: If 0 ≤ j ≤ q – 1 be an even number, then
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Proof:  First suppose that j = 2. We consider the tube can be built up from two
halves collapsing at level 2. The bottom part is the graph G2 =TUHC6 [2p; q-2] and
the level 2 of G is the first level of G2 and we can consider x21 one of the black edges
in the first row of graph G2. According to result 2, we have

).x(b)x(b)x(b)x,x(d)x,x(d)x,x(d 3q101p2,2G23G21G 111 −− +++==== LL

The top part is the graph TUHC6 [2p; 3]= 2Ĝ and level 2 of graph G is the first

level of 2Ĝ and x21  is such a white vertex of 2Ĝ . Therefore by result 2, we have

)x(w)x(w)x(w)x,x(d 21021Ĝ2
++=  and
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and similarly
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We can repeat similar this process for x22 and see that
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By repetition of this argument we can obtain the result.
For all 0 ≤ j ≤ q – 1, put
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In the following result we find a relation beween Schultz and Wiener polynomials
of TUHC6[2p; q].
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Proof:  Let A0 and Aq-1 be the set of vertices on the levels k = 0 and k = q-1,
respectively. We have
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The graph G′ can be obtained from the graph G such that line q -1 is its first row
and line 0 is its last row. Let
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and similarly
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Theorem: The Schultz polynomial of G is given by
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Suppose that pq ≤ . Then by Lemma 1, for each 1qk0 −≤≤  we have
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We can proof other conditions by this method.
Now differentiation of Schultz polynomial of G and letting x=1 we obtain the

Schultz index of G.
Corollary:  The Schultz index of G is given by

when pq ≤

),pq12qp18q2pq6p6p6q3q32(pq)G(S 22223
3
1 ++−−−−−+=

and when qp <

).q24p3q12qp12q12p2p32(p)G(S 332222
3
1 −−−+−−+=

Conclusion

We developed a method which is usually useful for calculating Schultz polynomials
of C6 nanotubes. As a consequence of calculating Schultz polynomial of zigzag
polyhex nanotubes we computed Schultz index of such nanotubes.
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