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The non-rigid molecule group theory (NRG), in which the dynamical
symmetry operations are defined as physical operations, is a new field
of chemistry. In a series of papers Smeyers applied this notion to determine
the character table of restricted NRG (r-NRG) of some molecules. For
example, Smeyers and Villa computed the r-NRG of the triple equivalent
methyl rotation in pyramidal trimethylamine with inversion and proved
that the r-NRG of this molecule is a group of order 648, containing two
subgroups of order 324 without inversions. In this paper, a simple method
is used, by means of which it is possible to calculate character tables for
the symmetry group of molecules consisting of a number of XH3 groups
attached to a rigid framework. We have studied the full non-rigid group
(f-NRG) of cis-tetraamminedichloro-cobalt(III). By separating the type
of conjugacy classes of the point group, we construct the full non-rigid
group of the molecule. We show that this group has 33 conjugacy classes
and therefore 33 irreducible characters. This group has eight non-real
valued irreducible characters which computed by inducing the characters
of a subgroup of G.

Key Words: Character table, cis-Tetraamminedichlorocobalt(III),
Full non-rigid group.

INTRODUCTION

The non-rigid molecule group theory (NRG) in which the dynamical symmetry
operations are defined as physical operations is a new field of chemistry. Smeyers
and Villa in a series of papers1,2 applied this notation to determine the character
table of restricted NRG of some molecules. A molecule is said to be non-rigid if
there are several local minima on the potential-energy surface easily attainable by
the molecular system via a tunneling rearrangement. A non-rigid molecule, which
possesses various iso-energetic forms separated by relatively low energy barriers,
presents large amplitude movements between various possible configurations. Because
of this deformability, the non-rigid molecules exhibit some interesting properties
of intermolecular dynamics, which can be studied more easily reporting to group
theory.

Finite group theory is the mathematics useful tool. It plays an important role in
the study of molecules, crystals and clusters in chemistry although applications



have usually been restricted to small or moderately sized systems due to computational
limitations. To be practical for large systems, finite group theory requires both
computer calculation and the advanced computational methods. Numerous applica-
tions of group theory to the large amplitude vibration spectroscopy of small organic
molecules are appearing in the literature3-10. Lomont10 has proposed two methods
for calculating character tables. These are satisfactory for small groups, but both of
them require knowledge of the class structure and hence of the group multiplication
table and become very unwieldy as soon as the order of the group becomes even
moderately large. They are usually quite impracticable for non-rigid molecules,
whose symmetry groups may have several thousands of elements. The alternative
approach is less mechanical, requiring a certain amount of thought, but it is neverthe-
less simpler in practice. This involves two steps: (i) the decomposition of the group
into classes and (ii) the determination of sets of basis functions for certain represen-
tations, whose characters are then determined directly.

The molecular symmetry group theory (MSG) of permutation inversion groups
(PI) constructed by permutations and permutation-inversions of identical particles.
The MSG group is then formed by all feasible permutations and permutation-
inversions11-13. In 1963 Longuet-Higgins11 investigated the symmetry groups of non-rigid
molecules, where changes from one conformation to another can occur easily. In
many cases, these dynamical symmetry groups are not isomorphic with any of the
familiar symmetry groups of rigid molecules and their character tables are not
known. It is therefore of some interest and importance to develop simple methods
of calculating these character tables, which are needed for classification of wave
functions, determination of selection rules and so on. Ashrafi and coauthors, using
a computational approach, computed character table of some molecules14-17. Stone13

described a method which is appropriate for molecules with a number of XH3 groups
attached to a rigid framework. However, this method is not appropriate in cases
where the framework is linear, as with ethane and dimethylacetylene, but Bunker12

has shown how to deal with such molecules.
In1,2, Smeyers and Villa investigated the r-NRG of planer trimethylamine and

proved that this is a group of order 324. Furthermore, they showed that this molecule
has a pyramidal inversion and so the order of r-NRG of trimethylamine is 648. The
full and restricted non-rigid group theory (for r-NRG) built up with physical operations,
expressed in terms of internal coordinates that transform one conformation into
another iso-energetic one. The r-NRG is then formed by the complete set of physical
operations which commute with the given restricted or Hamiltonian operators18,19.

In this work a simple method is described, by means of which it is possible to
calculate character tables for the symmetry group of molecules consisting of a
number of XH3 groups attached to a rigid framework. The motivation for this study
is outlined in references14-17,20-31 and the reader is encouraged to consult these papers
for background material as well as basic computational techniques. In this paper,

870  Arezoomand et al. Asian J. Chem.



we investigate the f-NRG of cis-tetraamminediclorocobalt(III). It is proved that
this is a group of order 324 with 33 conjugacy classes so with 33 irreducible chara-
cters. Reference32 for the standard notation and terminology of character theory is
used.

Preliminaries:  We now recall some algebraic definitions that will be used in
the paper. Suppose that G is a group, the group generated by all elements x-1y-1xy
for elements x, y of G is called the derived subgroup of G and denoted by G'. It is a
well known fact that the number of linear characters of a finite group G is the order
of factor group G modulus its derived subgroup32.

Let G be a finite group and let N be a normal subgroup of G. We can use the
characters of G/N to get some of the characters of G, by a process which is known
as lifting. Thus, normal subgroups help us to find characters of G. To see this, we
assume that χ is a character of G/N. Define the map ϕ:G→C, where C is the field of
complex numbers, by ϕ(g)=χ(gN), for g∈G. Then ϕ is a character of G and χ and ϕ
have the same degree. The character ϕ of G is called the lift of χ to G. It is well
known that χ is irreducible if and only if ϕ is irreducible32.

Suppose that χ and ϕ are characters of group G. The scalar product of these

characters is denoted by [χ,ϕ] and defined by ∑
∈

ϕχ=ϕχ
Gg

)g()g(
|G|

1
],[ . It is a well

known fact that if χ is a character of G and ϕ is an irreducible character of G and [χ, φ]
= 1 then χ - ϕ is a character of G. Recall that for a character χ of G, χ is irreducible
if and only if [χ,χ] = 132. If χ and ϕ are two different irreducible characters of G
then we have [χ, ϕ] = 0.

For every element x of group G, the subgroup CG(x)={y∈G|xy=yx} is called
the centralizer of x in G. If G is finite, then |CG(x)|=|G|/|ClG(x)|, where ClG(x) is the
conjugacy class of x in G. Let H be a subgroup of group G and let ϕ be a character

of H. Then ϕG the induced character on G, is given by ∑
∈

−°ϕ=ϕ
Gx

1G )xgx(
|H|

1
)g( ,

where ϕº is defined by ϕº(h)=ϕ(h) if h∈H and ϕº (h) = 0 if h ∉ H. It is easy to check
that ϕG (1) = ϕ (1) |G|/|H|. Explicit computation of induced characters is extremely
useful for the construction of character tables, despite the fact that ϕG is usually
reducible even if ϕ is irreducible. Given a subgroup H of G and a character ϕ of H and
g ∈ G, an efficient way to compute ϕG (g) explicitly is to choose representatives, x1,
x2, …, xm for the conjugacy classes of H which contained in ClG(g) in G and to use
the formula ϕG (g)=|CG(g)|Σϕ(xi)/|CH(xi)|32.

In this paper we denote a cyclic group of order n by Zn and a symmetric group
on n symbols by Sn. Our notations are standard and adapted mainly from32. We
apply a useful programming language, namely GAP33, to find many properties of a
group. Using this package we can perform most of our computations.
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EXPERIMENTAL

First of all, we consider the point group of each molecule in the rigid state. The
point group of cis-tetraamminedichlorocobalt (III) is C2v, as shown in Fig. 1. We
define the operation g1 = (6,8,7), g2 = (9,10,11), g3 = (12,13,14) and g3 = (15,16,17)
for cis-tetraamminedichlorocobalt(III), which are rotations that leave the frame-
work unchanged, in a positive sense, of each NH3 group. It is assumed that all of
these operations are feasible. It is known that every group is union of conjugacy
classes. It is easy to check that the conjugacy classes of a group have no common
non-identity element, so by characterization of the classes one can construct the
group. Using this fact, the full non-rigid group of the molecule has been computed
in the next section.

Fig. 1. Structure of cis-tetraamminediclorocobalt(III)

RESULTS AND DISCUSSION

In this section we compute all of the conjugacy classes of G by partition the
operations that leave the framework of the molecule changed and unchanged. The
reflection with respect to the horizontal plane containing molecules 1, 3, 4, 18, 19
is in G. So h1 = (2,5) (8,15) (7,17) (6,16) (9,10) (13,14) is an element if G. The
reflection with respect to the vertical plan containing molecules 2 and 5, bisecting
molecules 18, 19 and 3, 4 is in G. Therefore h2 = (19,18) (15,17) (8,7) (3,4) (11,12)
(10,13) (9,14) is an element of G. It is easy to see that the full non-rigid group of the
molecule is generated by {g1, g2, g3, g4, h1, h2}. At this time we can use the GAP
package to compute the conjugacy classes of the group. But in order to investigate
the structure of the group we compute these classes by separating the operations.
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Let us first consider operations that leave the framework of the molecule un-
changed. The operations that rotate different numbers of NH3 groups must belong
to different conjugacy classes. We now consider the four operations that rotate one
NH3 group; it is easy to see that they must belong to the two different classes, since
operations involving rotation of the molecular framework will transform g1 into g1

-1

or g4
-1 and g2 into g2

-1 or g3
-1, changing the sense of the rotation. Now consider

operations that rotate two NH3 groups. By a simple calculation we have
ClG(g3g4) = {g3g4, g2

-1g4
-1, g1

-1g3
-1, g1g2}

ClG(g3g4
-1) = {g3g4

-1, g2
-1g4, g1g3

-1, g1
-1g2}

ClG(g3
-1g4) = {g3

-1g4, g2g4
-1, g1

-1g3, g1g2
-1}

ClG(g3
-1g4

-1) = {g3
-1g4

-1, g2g4, g1g3, g1
-1g2

-1}
ClG(g2g3) = {g2g3, g2

-1g3
-1}

ClG(g2g3
-1) = {g2g3

-1, g2
-1g3}

ClG(g1
-1g3) = {g1

-1g3, g1g3
-1}

ClG(g1
-1g3

-1) = {g1
-1g3

-1, g1g3}.
So we have 8 conjugacy classes with elements that rotate two NH3 groups.

Operations that rotate three NH3 groups form 8 conjugacy classes because we have
ClG(g2g3g4) = {g2g3g4, g2

-1g3
-1g4

-1, g1
-1g2

-1g3
-1, g1g2g3}

ClG(g2g3g4
-1) = {g2g3g4

-1, g2
-1g3

-1g4, g1
-1g2g3, g1g2

-1g3
-1}

ClG(g2g3
-1g4) = {g2g3

-1g4, g2g3
-1g4

-1, g1
-1g2g3, g1g2

-1g3}
ClG(g2

-1g3g4) = {g2
-1g3g4, g2

-1g3g4
-1, g1

-1g2g3
-1, g1g2g3

-1}
ClG(g1

-1g3g4) = {g1
-1g3g4, g1

-1g3
-1g4, g1g2g4

-1, g1g2
-1g4

-1}
ClG(g1

-1g3g4
-1) = {g1

-1g3g4
-1, g1

-1g3g4
-1, g1g2

-1g4, g1g2
-1g4}

ClG(g1
-1g3

-1g4) = {g1
-1g3

-1g4, g1
-1g2

-1g4
-1, g1g2g4, g1g2g4}

ClG(g1
-1g2g4) = {g1

-1g2g4, g1
-1g2

-1g4, g1g3g4
-1, g1g3

-1g4
-1}.

All of operations that rotate four NH3 groups separate into five conjugacy classes
as follows:

ClG(g1
-1g2g3g4) = {g1

-1g2g3g4, g1
-1g2

-1g3
-1g4, g1g2g3g4

-1, g1g2
-1g3

-1g4
-1}

ClG(g1
-1g2g3g4

-1) = {g1
-1g2g3g4

-1, g1g2
-1g3

-1g4}
ClG(g1

-1g2g3
-1g4) = {g1

-1g2g3
-1g4, g1

-1g2
-1g3g4, g1g2g3

-1g4
-1, g1g2

-1g3g4
-1}

ClG(g1
-1g2g3

-1g4
-1) = {g1

-1g2g3
-1g4

-1, g1
-1g2

-1g3g4
-1, g1g2g3

-1g4
-1, g1g2

-1g3g4}
ClG(g1

-1g2
-1g3

-1g4
-1) = {g1

-1g2
-1g3

-1g4
-1, g1g2g3g4}.

The operations that permute the nuclei of the framework are corresponding to
the non-identity elements of the C2v. It is known that the point group C2v has four
elements and four conjugacy classes which are identity, C2 and two classes of type σv.

The unique C2 operation of C2v applied to the framework is the permutation
(2,5) (3,4) (18,19), but this is not feasible for the molecule as the whole and the
protons have to be permuted as well.

Let R1 = (2,5) (3,4) (6,15) (7,17) (8,16) (9,12) (10,13) (11,14) (18,19). R1 is the
only operation that doesn't rotate any of the NH3 groups. All of operations that
rotate one of the NH3 groups have form R1gi

j or gi
jR1 such that i∈{1,2,3,4} and

j∈{1,-1}. We have
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R2 = R1g1
-1 = (2,5) (3,4) (6,15,7,17,8,16) (9,12) (10,13) (11,14) (18,19)

R3 = R1g2 = (2,5) (3,4) (6,15) (7,17) (8,16) (9,12,10,13,11,14) (18,19).
It is easy to check that R1gi, giR1 and gi

-1R1 are conjugate with R2 for i∈{1, 4}
and are conjugate with R3 for i∈{2, 3}. Now consider all of operations that rotate
two NH3 groups. These operations are R1gi

mgj
n or gi

mgj
nR1 such that i,j∈{1,2,3,4}

for i≠j and m,n∈{1,-1}. In this case we have
R4 = R1g1g2 = (2,5) (3,4) (6,15,8,16,7,17) (9,12,10,13,11,14) (18,19)
R5 = R1g1

-1g2 = (2,5) (3,4) (6,15,7,17,8,16) (9,12,10,13,11,14) (18,19)
The operations R1gi

mgj
n and gi

mgj
nR1 for i=1, j=2 or 3 and for i=2 or 3, j=4, are

conjugate with R4 for m=n and are conjugate with R5 for m≠n. Also these operations
are conjugate with R1 for i=1, j=4 and for i=2, j=3 whenever m≠n. Operations that
rotate three NH3 groups are R1gi

rgj
sgk

t or gi
rgj

sgk
tR1 such that i,j,k ∈{1,2,3,4} for

distinct i,j,k and r,s,t∈{1,-1}. These operations are conjugate with R2 if i∈{1,2},
j=i+1, k=i+2, r=t≠s or r=s≠t. Also these are conjugate with R3 for i=1,j∈{2,3}, k=4,
r≠s=t or r=s≠t and are conjugate with R4 if r≠s=t and r=t≠s and r=s≠t. Finally these
operations are conjugate with R5 for r=s=t.

By considering rotation of all of NH3 groups we obtain operations R1gh
mgi

ngj
rgk

s

and gh
mgi

ngj
rgk

sR1 such that h=1, i=2, j=3, k=4 and m,n,r,s∈{1,-1}. These are conju-
gate with R1 if m=n≠r=s or m=r≠n=s and are conjugate with R2 if m=r=s≠n or
m=n=s≠r and are conjugate with R3 for m≠n=r=s or m=n=r≠s and are conjugate
with R4 if m=n=r=s and are conjugate with R5 if m=s≠n=r.

Consequently by considering the operation C2 and rotations of NH3 groups (all
cases) we obtain five conjugacy classes. At this time we use the GAP package and
calculate the size and conjugacy classes of G with representatives as above. But in
order to find conjugacy classes of G we may argue as follows. All of the permutations
of cycle type 29 are conjugate in the group. Thus, we obtain a conjugacy class of
length 18 with representative R1. Similarly R2, R3, R4 and R5 are not conjugate and
length of their conjugacy classes is 18.

Similar methods are applied to other operations of the point group (σv) to derive
other sets of conjugacy classes of this molecule. In this case put

σv1 = (3,4) (7,8) (9,12) (10,14) (11,13) (16,17) (18,19),
σv2 = (2,5) (6,15) (7,16) (8,17) (10,11) (13,14).

Again in this stage we can consider all operations of the form σvig1
mg2

ng3
rg4

s,
where i∈{1,2} and m,n,r,s∈{-1,0,1}, and obtain all operations that are conjugate
with σv1 or σv2 or not. These operations are not conjugate so we can obtain two
conjugacy classes of lengths 27 with elements of type 27 and 26, respectively. Note
that R6 is not conjugate with any of σvi and Rj, i∈{1,2} and j∈{1,…,5}, where

R6 = σv2g1
-1 = (2,5) (6,15,7,16,8,17) (10,11) (13,14)

The length of class with representative R6 is 54. Finally we can consider all
operations of the form R1σvig1

mg2
ng3

rg4
s. It is easy to check that

R7 = R1σv2g2 = (3,4) (7,8) (9,12,10,14,11,13) (16,17) (18,19)
Thus we obtained 33 different conjugacy classes of group G. We have summarized

our calculations in Table-1.
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TABLE-1 
REPRESENTATIVES AND SIZES OF THE CONJUGACY CLASSES OF FULL  

NON-RIGID GROUP OF cis-TETRAAMMINEDICLOROCOBALT(III) 

No. Representative Size No. Representative Size 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

() 
(15,16,17) 
(12,13,14) 
(12,13,14)(15,16,17) 
(12,13,14)(15,17,16) 
(12,14,13)(15,16,17) 
(12,14,13)(15,17,16) 
(9,10,11)(12,13,14) 
(9,10,11)(12,13,14)(15,16,17) 
(9,10,11)(12,13,14)(15,17,16) 
(9,10,11)(12,14,13) 
(9,10,11)(12,14,13)(15,16,17) 
(9,11,10)(12,13,14)(15,16,17) 
(6,7,8)(15,16,17) 
(6,7,8)(15,17,16) 
(6,7,8)(12,13,14)(15,16,17)  
(6,7,8)(12,13,14)(15,17,16) 

1 
4 
4 
4 
4 
4 
4 
2 
4 
4 
2 
4 
4 
2 
2 
4 
4 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

(6,7,8)(12,14,13)(15,17,16) 
(6,7,8)(9,10,11)(15,16,17) 
(6,7,8)(9,10,11)(12,13,14)(15,16,17)  
(6,7,8)(9,10,11)(12,13,14)(15,17,16) 
(6,7,8)(9,10,11)(12,14,13)(15,16,17)  
(6,7,8)(9,10,11)(12,14,13)(15,17,16) 
(6,7,8)(9,11,10)(12,14,13)(15,17,16)  
(3,4)(7,8)(9,12)(10,14)(11,13)(16,17)(18,19)  
(3,4)(7,8)(9,12,10,14,11,13)(16,17)(18,19) 
(2,5)(6,15)(7,16)(8,17)(10,11)(13,14)  
(2,5)(6,15,7,16,8,17)(10,11)(13,14) 
(2,5)(3,4)(6,15)(7,17)(8,16)(9,12)(10,13)(11,14)(18,19) 
(2,5)(3,4)(6,15,7,17,8,16)(9,12)(10,13)(11,14)(18,19) 
(2,5)(3,4)(6,15)(7,17)(8,16)(9,12,10,13,11,14)(18,19) 
(2,5)(3,4)(6,15,7,17,8,16)(9,12,10,13,11,14)(18,19) 
(2,5)(3,4)(6,15,8,16,7,17)(9,12,10,13,11,14)(18,19) 

4 
4 
4 
2 
4 
4 
2 
27 
54 
27 
54 
9 
18 
18 
18 
18 

 

By the description in the previous section we have |G|=Σcg where the sum runs
over a set of g∈G using one g from each conjugacy class and cg is the size of
conjugacy class including g. So G has 324 elements.

Now we can use the GAP package and find the character table of G. But in
order to find relations between irreducible characters of G we may argue as follows.
Since G/G' ≈ Z2 × Z2, is an abelian group of order 4, we can obtain four linear
characters of G, which are irreducible. We denote these irreducible characters by
χ1, χ2, χ3 and χ4.

Now normal subgroups of G are:
T1=<(3,4)(7,8)(9,14)(10,13)(11,12)(16,17)(18,19), g4, g1g4, g1g2g3>
T2=<(2,5)(3,4)(6,16,7,15,8,17)(9,13)(10,14)(11,12)(18,19),g1

-1g4,g1
-1g2

-1g3g4>
T3=<(2,5)(6,16)(7,17)(8,15)(10,11)(12,14),g1g4,g3

-1, g1g2g3
-1g4>

T4=<(2,5)(3,4)(6,15)(7,17)(8,16)(9,14,11,13,10,12)(18,19),g1g4
-1, g1g2

-1g3g4
-1>

T5=<(2,5)(3,4)(6,16,7,15,8,17)(9,14,11,13,10,12)(18,19),g1g4
-1, g1g2

-1g3g4
-1>

T6=<(2,5)(3,4)(6,17,8,15,7,16)(9,14,11,13,10,12)(18,19),g1g4
-1, g1g2

-1g3g4
-1>

K1=<g1g4, g2
-1g3

-1>
K2=<g1g4, g2

-1g3>
K3=<g4

-1, g1g4>
K4=<g1

-1g4, g2
-1g3

-1>
K5=<g1

-1g4, g1g2
-1g3

-1g4>
K6=<g1

-1g4, g1
-1g2

-1g3
-1g4

-1>
K7=<g3, g2

-1>
K8=<g1g2

-1g4, g2
-1g3 >

K9=<g1
-1g2

-1g4
-1, g2

-1g3>.
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31 

31 
32 

32  
32  

32  
32  

33  
33  

32  
33  

33  
32  

32  
33  

33  
33  

33  
34  

34  
34  

34  
34  

27  
24 61 

26 
23 61 

29 
26 61  2

6 61  2
3 62  2

3 62  

χ 1
 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
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We can find these normal subgroups using the GAP package. The factor groups
of G modulus Ti are non-abelian groups of order 6 and so isomorphic to S3, the
symmetric group on three symbols. Thus we can obtain six irreducible characters
of degree 2 of G by lifting irreducible characters of these factor groups. We denote
these characters by χ16, χ10, χ8, χ6, χ14 and χ12. The factor groups of G modulus Ki

are isomorphic to S3 × S3. Therefore we can obtain nine irreducible characters of
degree 4 of G by lifting irreducible characters of these factor groups. We denote
these characters by χ17, χ22, χ25, χ18, χ20, χ23, χ19, χ24 and χ21. Now put χ5 = χ3 χ6, χ7

= χ2 χ8, χ9 = χ2 χ10, χ11 = χ3 χ12, χ13 = χ3 χ14 and χ15 = χ3 χ16. All of these 25
irreducible characters are real valued. It is a well known that g is conjugate to g-1 in
G if and only if χ(g) is real for all characters χ of G32. Since for every g in the fourth
conjugacy class g-1 is not in this conjugacy class, so there exist at list one irreducible
character χ such that is not real valued. Now we find non-real valued irreducible
characters of G. Let

N = < g1
-1g2,g3g4,g1

-1 >.

Then N is an ablelian group of order 27 which is isomorphic to Z3 × Z3 × Z3 and
its character table is well known. Using the irreducible characters of this group we
construct irreducible characters of G of degree 4 which is not real valued. Consider
below characters as irreducible characters of N

χ = (1,1,1,1,1,1,1,1,1,A,A,A,A,A,A,A,A,A,/A,/A,/A,/A,/A,/A,/A,/A,/A)

φ = (1,1,1,1,1,1,1,1,1,/A,/A,/A,/A,/A,/A,/A,/A,/A,A,A,A,A,A,A,A,A,A)

γ = (1,1,1,A,A,A,/A,/A,/A,1,1,1,A,A,A,/A,/A,/A,1,1,1,A,A,A,/A,/A,/A)

ζ = (1,1,1,/A,/A,/A,A,A,A,1,1,1,/A,/A,/A,A,A,A,1,1,1,/A,/A,/A,A,A,A)

δ = (1,1,1,A,A,A,/A,/A,/A,A,A,A,/A,/A,/A,1,1,1,/A,/A,/A,1,1,1,A,A,A)

λ = (1,1,1,/A,/A,/A,A,A,A,/A,/A,/A,A,A,A,1,1,1,A,A,A,1,1,1,/A,/A,/A)

η = (1,1,1,A,A,A,/A,/A,/A,/A,/A,/A,1,1,1,A,A,A,A,A,A,/A,/A,/A,1,1,1)

µ = (1,1,1,/A,/A,/A,A,A,A,A,A,A,1,1,1,/A,/A,/A,/A,/A,/A,A,A,A,1,1,1)
Note that A= -e2πi/3 + 2eπi/3 and /A denotes the complex conjugate of A. It is easy

to check that χG is of degree 12 and [χ, χ19] = 1 so χ - χ19 is a character. Further
computation yields that [χ - χ19, χ20] = 1 so χ - χ19 - χ20 is also a character of degree
4, but we have [χ - χ19 - χ20, χ - χ19 - χ20] = 1, finally χ - χ19 - χ20 is an irreducible
character of G. We denote this character by χ31. By similarly method we can see
that all of ϕ - χ19 - χ20, γ - χ21 - χ25, ζ - χ21 - χ25, δ - χ13 - χ14 - χ17, λ - χ13 - χ14 - χ17, η
- χ18 - χ22, µ - χ18 - χ22 are irreducible characters of G of degree 4 which is not real
valued. We denote this character by χ30, χ26, χ27, χ33, χ32, χ29 and χ28. This completes
the character table of G (Table-2).
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