New Insight to Hair-Loss as a Side Effect of Some Drugs

AHMAD R. BEKHRADNIA^{*}, MOHAMMAD ALI EBRAHIMZADEH[†], VAHID HEJAZI[†], REZA GORJI[†] and ESMAEEL VESSALLY[†] Department of Chemistry and Pharmaceutical Science Research Center Mazandaran University of Medical Sciences, Sari, Iran E-mail: reza_bnia@yahoo.com

Geometrical optimizations and frequency calculations were performed for some drugs with hair-loss as side effect. Cimetidine, metoprolol, etretinate and doxepin apart from the more common effects, were selected. The calculations were carried out at the Hartree-Fock (HF) level of theory using $6-31G^*$ basis sets. All of the mentioned drugs were portrayed that the structural requirements include an electron-rich functional group in the plane of and separated from the center of an aromatic ring by *ca.* 7.68 Å. On the basis, one may realize that the related distance, is important and effective factor in structure of drugs with hair-loss side effect. The *ab initio* calculated thermodynamic data and geometrical parameters are also given for clear molecular structures.

Key Words: *ab initio*, Hair-loss (Alopecia), Conformation, Electronrich functional group.

INTRODUCTION

Alopecia (hair-loss) has many causes. Alopecia may also be congenital, be associated with systemic disorders, severe emotional and physical stress, or skin disorders, or due to nutritional deficiencies. The most common form, male-pattern alopecia, is androgen-related¹⁻⁴. Some drugs may cause alopecia *e.g.*, some H₂blockers, β -blockers, anti-depressants and retinoids⁵⁻⁷. In some cases there is destruction of the hair follicles (scarring) resulting in permanent hair-loss. If the hair follicles remain intact (non-scarring alopecia) then treatment of the underlying condition or removal of the suspected drug may produce hair regrowth. Drug treatment may be tried in alopecia areata and male-pattern alopecia, although it is often unsuccessful⁸. Cytotoxic drugs may cause alopecia by eigher anagen or telogen effluvium⁹⁻¹¹. In continuation of our research program dealing with molecular modelling of chemical molecules¹²⁻¹⁴, we were interested in molecular structure relationship and side effect of the drugs. In this study, some drugs apart from more common effects and their patterns of drug-induced hair-loss (as side effect) were selected. These are included cimetidine (2-cyano-1-methyl-3-[2-(5-methylimidazol-4-ylmethylthio)ethyl]guanidine) as a H₂-blocker, metoprolol 1-isopropylamino-3-[4-(2-methoxyethyl)phenoxy]propan-2-ol as a β -blocker, etretinate ethyl (all-*trans*)-9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethylnona-2,4,6,8-tetra-enoate with retinoid structure and doxepin (E)-3-

[†]Payame Nour University (PNU), Zanjan, Iran.

Vol. 21, No. 3 (2009)

(dibenz[b,e]oxepin-11-ylidene)propyldimethyl-amine as a tricyclic anti-depressant drug. Up to now, no report has appeared on the conformational analysis of the mentioned drugs. In this paper, geometrical optimization, thermodynamic data and hair-loss effects relationship with molecular structure were reported for cimetidine, metoprolol, etretinate and doxepin at the Hartree-Fock (HF) level of theory using 6-31G* basis set (Fig. 1).

Fig. 1. Final optimized conformers of cimetidin (A), metoprolol (B), etretinate (C) and doxepin (D) obtained through HF/6-31G* calculations

Asian J. Chem.

RESULTS AND DISCUSSION

Complete geometry optimizations were performed on the cimetidine, metoprolol, etretinate and doxepin molecules. All structures were optimized at the Hartree-Fock¹⁵ level of theory with the 6-31G* basis set¹⁶. The frequency calculations were done at the same level to determine the nature of the optimized structures to obtain zero-point energies (un-scaled) and thermo-chemical corrections. All calculations were carried out using the Gaussian 98 program¹⁷. Thermodynamic data of these drugs were calculated at HF/6-31G* level and are shown in Table-1.

TABLE-1

HF/6-31G* OPTIMIZED THE CORRECTED THERMAL ENERGIES (E), THERMAL ENTHALPIES (H) AND THERMAL FREE ENERGIES (G), IN kcal mol⁻¹, FOR CIMETIDINE, METOPROLOL, ETRETINATE AND DOXEPIN MOLECULES

Drug molecule	Thermal energies (E)	Thermal enthalpies (H)	Gibbs free energies (G)
Cimetidine	-697531.2906	-697530.1710	-697613.2142
Metoprolol	-540115.8148	-540114.6952	-540202.6217
Etretinate	-575468.1817	-575467.0621	-575557.6516
Doxepin	-539799.9557	-539798.8362	-539876.3918

The calculation of thermal energies (E), thermal enthalpies (H) and thermal Gibbs free energies (G) have also included in present work. These are along with the calculated geometrical parameters such as bond length, bond angles and dihedral angles (Tables 2-5). In order to evaluate scope and investigation of these different drugs as their similar side effect, the geometrical center of the aromatic rings were served as the most easily defined reference point. The electron-rich functional group was considered in the plane of and separated from the aromatic ring center. The measurement of distance parameter between the related electron functional group and defined reference point was employed Gaussian and its correlated softwares. This parameter is one of the most important factors in description of relationships in structure and reactivity and it is used to explain some pharmacokinetic properties and biological effects of drugs^{8,18}.

The major structural features of these molecules are briefly summarized in Fig. 1. For the best selection of electron-rich functional group in mentioned drugs and also a deeper investigation, it was used the calculated NBO atomic charges shown in Tables 2-5.

The related atom in each drugs were selected as follows: the nitrogen atom which is connected to ethyl group in cimetidine, the nitrogen atom of isopropylamine group in metoprolol, the C₅ of ethylenic carbon in etretinate, the nitrogen atom of dimethylamine group in doxepin. Accordingly, the calculated distance of aromatic ring center from a desired hetero-atom was 7.65 Å for cimetidine, 7.98 Å for metoprolol, 7.68 Å for etretinate and 7.40 Å for doxepin.

Vol. 21, No. 3 (2009)

Entry	Dihedral angles (°)	Entry	Bonding angles (°)	Entry	Bonding length (Å)	Entry	Natural charge
33,17,15,32	0.648	A ₁	125.778	R ₁	1.3507	1	-0.66245
33,17,16,3	179.721	A_2	126.328	\mathbf{R}_2	0.9944	2	0.14698
33,17,15,2	179.845	A_3	126.324	R_3	1.2851	3	0.08013
16,17,15,2	-0.112	A_4	122.452	R_4	1.3735	4	-0.57533
17,15,2,3	0.174	A_5	120.535	R ₅	1.4950	5	0.22681
15,2,3,16	-0.1803	A_6	108.934	R_6	1.3761	6	-0.59283
16,3,2,1	179.733	A_7	108.889	R ₇	1.4959	7	-0.20729
17,15,2,1	-179.751	A_8	110.016	R_8	1.8260	8	-0.72070
1,2,3,4	0.197	A_9	99.630	R_9	1.8154	9	0.84672
2,3,16,17	0.116	A_{10}	111.024	R ₁₀	1.4556	10	-0.73036
16,3,4,22	141.369	A ₁₁	109.059	R ₁₁	0.9971	11	-0.40585
16,3,4,5	-97.530	A ₁₂	108.050	R ₁₂	1.3604	12	-0.76241
2,3,4,5	81.965	A ₁₃	115.277	R ₁₃	1.2883	13	0.50932
2,3,4,22	-39.135	A_{14}	114.953	R ₁₄	1.3518	14	-0.49099
21,4,5,6	56.732	A ₁₅	122.045	R ₁₅	1.3269	15	-0.63260
22,4,5,6	-61.207	A ₁₆	117.922	R ₁₆	1.1426	16	-0.55027
4,5,6,7	176.455	A ₁₇	113.521	R ₁₇	1.4538	17	0.27686

Asian J. Chem.

Entry	Dihedral	Enter	Bonding	Enter	Bonding	Enter	Natural
Enuy	angles (°)	Enuy	angles (°)	Enuy	length (Å)	Enuy	charge
33,27,20,16	179.923	A ₁	114.247	$R_1(33,27)$	1.39242	1	0.37912
27,20,16,10	179.791	$\dot{A_2}$	108.337	$R_2(27,20)$	1.39527	2	-0.27495
20,16,10,5	-86.9208	A_3	112.325	$R_3(20,16)$	1.52419	3	-0.19114
20,16,10,6	91.8066	A_4	121.137	R_4 (16,10)	1.51343	4	-0.31993
6,10,5,2	-0.225859	A_5	121.569	$R_5(10,5)$	1.39596	5	-0.18726
10,5,2,1	0.0435622	A_6	120.122	$R_{6}(5,2)$	1.37694	6	-0.08266
5,2,1,3	0.144322	A_7	119.437	$R_{7}(2,1)$	1.39200	7	-0.44859
2,1,3,6	-0.141923	A_8	119.501	$R_{8}(1,3)$	1.38363	8	-0.01471
1,3,6,10	-0.0482928	A_9	122.016	$R_{9}(3,6)$	1.39154	9	-0.64817
3,6,10,5	0.22849	A_{10}	117.356	$R_{10}(6,10)$	1.38320	10	-0.22042
3,1,4,7	0.2899	A ₁₁	124.528	$R_{11}(1,4)$	1.35334	11	-0.63436
2,1,4,7	-179.411	A_{12}	116.035	$R_{12}(7,4)$	1.40721	12	-0.05892
1,4,7,11	-177.934	A ₁₃	120.438	$R_{13}(7,11)$	1.52043	13	0.14694
4,7,11,18	59.6689	A_{14}	106.453	R_{14} (11,18)	1.40298	14	-0.46013
4,7,11,17	178.957	A ₁₅	109.432	$R_{15}(11,17)$	1.52649	15	-0.20237
7,11,17,21	75.6009	A_{16}	113.155	$R_{16}(17,21)$	1.52937	16	-0.56042
18,11,17,21	-163.754	A ₁₇	107.059	R ₁₇ (21,28)	1.45249	17	-0.40117
11,17,21,28	-172.162	A_{18}	113.783	R ₁₈ (28,35)	1.44790	18	-0.40683
17,21,28,34	166.769	A_{19}	113.057	$R_{19}(28,34)$	1.44787	19	-0.80654
17,21,28,35	-67.2597	A_{20}	111.374	_	_	20	0.23765
	—	A_{21}^{-3}	113.379	-	-	21	0.22772

TABLE-4 HF/6- 31G* OPTIMIZED CONFORMER, OPTIMIZED BOND LENGTH (Å), OPTIMIZED ANGLES (DEGREE), OPTIMIZED DIHEDRAL ANGLES (DEGREE) AND NATURAL CHARGES ARE SHOWN FOR ETRETINATE MOLECULE

Entry	Dihedral angles (°)	Entry	Bonding angles (°)	Entry	Bonding length (Å)	Entry	Natural charge
32,29,27,30	60.0929	A_1	110.411	R ₁	1.08392	1	-0.09411
34,29,27,30	-59.9937	A_2	108.738	R_2	1.83920	2	-0.26375
32,29,27,26	180.0000	A_3	107.091	R_3	1.51513	3	-0.15969
33,29,27,26	-59.9134	A_4	110.066	R_4	1.41466	4	-0.24777
34,29,27,26	59.9134	A_5	124.132	R ₅	1.08417	5	-0.17695
29,27,26,25	180.0000	A_6	118.581	R_6	1.08417	6	-0.23856
30,27,26,25	-59.7839	A_7	118.590	R ₇	1.33828	7	-0.16857
31,27,26,25	59.7839	A_8	122.829	R_8	1.50000	8	-0.12052
27,26,25,28	180.0000	A_9	119.497	R_9	1.46000	9	-0.16741
27.26.25.24	0.0000	A_{10}	120.207	R_{10}	1.07232	10	-0.27716
26,25,24,41	0.0000	A ₁₁	124.597	R ₁₁	1.33145	11	0.39313
28,25,24,41	180.0000	A ₁₂	124.556	R ₁₂	1.07566	12	-0.16420
28,25,24,1	0.0000	A ₁₃	118.915	R ₁₃	1.45400	13	-0.60664
26,25,24,1	180.0000	A_{14}	124.501	R ₁₄	1.07747	14	-0.22780
24,1,2,3	180.0000	A ₁₅	119.003	R ₁₅	1.33399	15	-0.33371
35,1,2,3	0.0000	A ₁₆	127.905	R ₁₆	1.07790	16	0.22607
7,8,9,16	0.0000	A ₁₇	114.529	R ₁₇	1.45479	17	0.24195
12,8,9,10	0.0000	A ₁₈	123.723	R ₁₈	1.07775	18	0.22622
9,10,11,15	0.0000	A ₁₉	120.117	R ₁₉	1.33363	19	0.21451
10,11,15,12	0.0000	A_{20}	117.112	R ₂₀	1.07874	20	0.21212
8,12,15,11	0.0000	A ₂₁	121.454	R ₂₁	1.45598	21	0.18458
18,12,15,11	180.0000	A ₂₂	121.174	R ₂₂	1.07716	22	0.18458
12,15,11,13	180.0000	A ₂₃	120.426	R ₂₃	1.33153	23	0.23270
10,11,13,14	180.0000	A ₂₄	122.266	R ₂₄	1.47094	24	-0.41717
15,11,13,14	0.0000	A ₂₅	118.347	R ₂₅	1.40181	25	0.97296
11,13,14,20	180.0000	A ₂₆	119.490	R ₂₆	1.07518	26	-0.64801
11,13,14,22	61.2188	A ₂₇	119.252	R ₂₇	1.37152	27	-0.03828
11,13,14,21	-61.2188	A ₂₈	115.805	R ₂₈	1.07346	28	-0.69153
_	_	A ₂₉	121.317	R ₂₉	1.07580	29	-0.65080
_	-	A ₃₀	124.943	R ₃₀	1.38950	30	0.19161
—	_	A ₃₁	119.724	R ₃₁	1.38315	31	0.19161

Asian J. Chem.

TABLE-5 HF/6- 31G* OPTIMIZED CONFORMER, OPTIMIZED BOND LENGTH (Å), OPTIMIZED ANGLES (DEGREES), OPTIMIZED DIHEDRAL ANGLES (DEGREES) AND NATURAL CHARGES ARE SHOWN FOR DOXEPIN MOLECULE

Entw	Dihedral	Enter	Bonding	Enter	Bonding	Enter	Natural
Enuy	angles (°)	Ешт	angles (°)	Enuy	length (Å)	Enury	charge
3,1,2,5	-0.190667	A ₁	120.531	$R_1(1,2)$	1.38700	1	-0.20316
1,2,5,6	0.0482365	A_2	115.642	$R_2(2,5)$	1.38300	2	-0.22957
2,5,6,4	0.336578	A_3	120.152	$R_{3}(5,6)$	1.38738	3	-0.07722
5,6,4,3	-0.382939	A_4	120.370	$R_4(6,4)$	1.38702	4	-0.02544
6,4,3,1	0.14429	A_5	119.432	$R_{5}(4,3)$	1.39503	5	-0.21353
4,3,1,2	0.142093	A_6	119.872	$R_{6}(3,1)$	1.38386	6	-0.21401
4,3,7,8	71.4701	A_7	118.151	$R_{7}(3,7)$	1.50659	7	-0.03068
3,7,8,9	-65.3046	A_8	112.990	$R_8(7,8)$	1.40837	8	-0.61739
7,8,9,10	8.73278	A_9	122.555	$R_{9}(8,9)$	1.35161	9	0.40088
8,9,10,11	1.48959	A_{10}	126.539	$R_{10}(9,10)$	1.39838	10	-0.14960
9,10,11,4	46.9547	A ₁₁	124.263	R_{11} (10,11)	1.49955	11	-0.05478
10,11,4,3	-61.3466	A ₁₂	115.941	R ₁₂ (11,4)	1.49655	12	-0.17066
11,4,3,7	-0.210142	A ₁₃	118.177	R ₁₃ (9,18)	1.39441	13	-0.45950
10,9,18,19	0.896328	A_{14}	120.132	R ₁₄ (18,19)	1.37534	14	-0.19526
9,18,19,20	0.241522	A ₁₅	121.100	R ₁₅ (19,20)	1.38708	15	-0.56217
18,19,20,21	-0.41018	A_{16}	119.835	R ₁₆ (20,21)	1.37791	16	-0.40049
19,20,21,10	-0.568084	A ₁₇	118.946	R ₁₇ (21,10)	1.39934	17	-0.40488
20,4,10,9	1.65385	A ₁₈	122.776	R ₁₈ (11,12)	1.32952	18	-0.27846
4,10,9,18	-1.78401	A ₁₉	117.186	R ₁₉ (12,13)	1.50692	19	-0.19355
10,11,12,13	5.27032	A_{20}	119.409	R ₂₀ (13,14)	1.53231	20	-0.26667
4,11,12,13	-175.429	A ₂₁	124.646	R ₂₁ (14,15)	1.45121	21	-0.17799
11,12,13,14	131.400	A ₂₂	128.960	R ₂₂ (15,16)	1.44771	22	0.22746
12,13,14,15	-176.634	A ₂₃	110.709	R ₂₃ (15,17)	1.44709	23	0.22939
13,14,15,16	161.357	A_{24}	113.242	_	_	24	0.22921
13,14,15,17	-72.4008	A ₂₅	111.730	—	—	25	0.23278

Vol. 21, No. 3 (2009)

Hair-Loss as a Side Effect of Some Drugs 2117

IADLE-0
CALCULATED DISTANCE OF AN ELECTRON-RICH FUNCTIONAL GROUP FROM
AROMATIC RING CENTER (A DEFINED REFERENCE POINT) WITH 95 %
CONFIDENCE LIMITS ARE SHOWN FOR EACH DRUG MOLECULE

TADLE

Drug molecules	Calculated distance of an electron-rich functional group from aromatic ring center (a defined reference point)	Calculated distances with 95 % confidence limits
Cimetidine	7.65 Å	
Metoprolol	7.98 Å	7 68 ± 0 27 Å
Etretinate	7.68 Å	7.08 ± 0.37 A
Doxepin	7.40 Å	

The arithmetic mean of the related calculated distance of above 4 drugs was found. The corresponding standard deviation was calculated in order to degrees of freedom. Then the calculated distances were extracted with 95 % confidence limits. As a result, it was found 7.68 \pm 0.37 Å. Consequently, noticeable consistency was obtained between all of mentioned 4 molecules on these theoretical results (Table-6).

Conclusion

Ab initio calculations revealed a clear picture of these 4 drugs. The best related conformers were found in order of the calculated geometrical parameters in Tables 2-5. All optimized structures and thermodynamic data showed minimal structural requirements include an electron-rich functional group (amino nitrogen or ethylenic carbon) in the plane and separated from the center of an aromatic ring by ca. 7.68 \pm 0.37 Å. Therefore, a theoretical attempt is made to avoid to hair-loss side effect and paving the way for the future synthesis in the laboratory.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of this work by the Mazandaran University of Medical Sciences, "Professors Projects Funds". The authors also wish to express their special thanks to beloved colleague Dr. Shahram Ala, for his cordial cooperation.

REFERENCES

- 1. V.H. Price, M. Angell and A.J.J. Wood, N. Engl. J. Med., 341, 964 (1999).
- 2. S.P. MacDonald Hull M.L. Wood, P.E. Hutchinson, M. Sladden and A.G. Mossenger, Br. J. Dermatol., 149, 692 (2003).
- W.F. Bergfeld, Am. J. Med., 98 (suppl 1A), 95S (1995).
 R. Sinclair, Br. Med. J., 317, 865 (1998).
- 5. A. Levantine and J. Almeyda, Br. J. Dermatol., 89, 549 (1973).
- 6. M.L. Blankenship, Australas J. Dermatol., 24, 100 (1983).
- 7. M.B. Brodin, Dermatol. Clin., 5, 571 (1987).
- 8. S. Sweet, Martindale: The Complete Drug Reference, Pharmaceutical Press, China (2007).
- 9. B.J. Kerker and A.F. Hood, Semin Dermatol., 8, 173 (1989).

Asian J. Chem.

- A. Rook and R. Dewber, Disease of the Hair and Scalp, Blackwell Scientfic Publication: Oxford, edn. 2 (1990).
- 11. P.K. Kutty, K.R.K. Raman, K. Hawken and J.A. Barrowman, Ann. Intern. Med., 97, 758 (1982).
- 12. M.Z. Kassaee, A.R. Bekhradnir and S. Arshadi, Asian J. Chem., 20, 43 (2008).
- 13. A.R. Bekhradnia and S. Arshadi, Asian J. Chem., 19, 5251 (2007).
- 14. A.r. Bekhradnia and S. Arshadi, Monatsh. Chem., 138, 725 (2007).
- 15. R. Weeny and G. Dierksen, J. Chem. Phys., 49, 4852 (1968).
- 16. P. Hariharan and J. Pople, Mol. Phys., 27, 209 (1974).
- M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, V. Znkrzewski, G. Montgomery, R. Startmann, J. Burant, S. Dapprich, J. Millam, A. Daniels, K. Kudin, M. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pamelli, G. Adamo, S. Clifford, J. Ochterski, G. Petersson, P. Ayala, Q. Cui, K. Morokoma, D. Malick, A. Rubuck, K. Raghavachari, J. Foresman, J. Cioslawski, J. Oritz, B. Stlefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Comperts, R. Martin, P. Fox, T. Keith, M. Al-laham, C. Peng, A. Akkara, C. Gonzales, M. Combe, P. Gill, B. Johnson, W. Chem, M. Wong J. Andres, C. Gonzales, M. Head-Gordon, E. Replogle and J. Pople, Gaussian Inc., Pittsburgh PA (1998).
- 18. W. Foye, Th. Lemek and D. Williams, FOYE's Principales of Medicinal Chemistry, Lippitcott: Philadelphia (2002)

(Received: 31 March 2008; Accepted: 17 November 2008) AJC-7035