Asian Journal of Chemistry

Occurrence of Aflatoxin M₁ in Raw Ewe's Milk Produced in Sanliurfa, Turkey

MUSTAFA ARDIC

Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, 63300 Sanliurfa, Turkey Fax: (90)(414)3144158; E-mail: mardic@harran.edu.tr

The presence and concentration range of aflatoxin M_1 (AFM₁) were investigated by Enzyme Linked Immunosorbent Assay (ELISA) technique in 90 samples of raw ewe's milk obtained from 2 dairies in Sanliurfa, Turkey. Analytical results showed that 88.9 % of the samples were contaminated with AFM₁. A total of 61.1 % of the samples tested exceeded 50 ng/L set by the Turkish and European regulations for AFM₁ in raw milk. AFM₁ levels ranged from 17 to 232 ng/L and mean value was 89.89 ng/L. The incidence of AFM₁ in milk from these dairies was 77.8 and 100 %, respectively. As a result, high incidence and levels of AFM₁ in raw milk samples produced in Sanliurfa were determined.

Key Words: Aflatoxin M₁, Raw milk, Ewe's milk, Occurrence, ELISA.

INTRODUCTION

Aflatoxins are a group of extremely toxic metabolites produced by *A. flavus*, *A. parasiticus* and the rare *A. nomius*, during the growth on foods and feeds. *Aspergillus flavus* produces only B aflatoxin, while the other two species produce both B and G aflatoxins^{1,2}. These fungi are capable of growing on a great variety of food commodities and animal feed materials when the conditions of temperature, relative humidity and product moisture are favourable^{3,4}. Aflatoxins are a significant threat to both human and animal health because they present carcinogenic, teratogenic and mutagenic potential. Among aflatoxins, aflatoxin B₁ (AFB₁) is considered to be the most potent naturally occurring hepatocarcinogen known, the risk assessment of which is well established¹. The International Agency for Research on Cancer (IARC) has classified as a Group 1 human carcinogen⁵.

Aflatoxin M_1 (AFM₁) is the hydroxylated metabolite of AFB₁ excreted in milk when lactating animals are fed with AFB₁ contaminated feeds⁶. The formation of AFM₁ occurs in the liver and it is secreted into the milk. There is a linear relationship between the amount of AFM₁ in milk and AFB₁ in feed consumed by the animals. It has been reported that 0.3-6.2 % of AFB₁ in animal feed is transformed to AFM₁ in milk², but this transmission rate varies from animal to animal, from day-to-day and from one milking to the next⁷. AFM₁ could be detected in milk 12-24 h after the first AFB₁ ingestion, reaching peak levels after a few days. When the intake of AFB₁ has finished, AFM₁ concentration in the milk decreases to an undetectable level⁸ after 72 h. Studies have clearly demonstrated that AFM₁ causes toxic and carcinogenic effects^{6,9}. Therefore, AFM₁ is classified as a Group 2B human carcinogen by IARC document⁵.

The possible presence of AFM₁ in milk and dairy products is a worldwide concern since these products are largely consumed by children, including infants who are considered more susceptible to the adverse effects of mycotoxins. Milk is not only consumed as liquid milk, but also utilized for the preparation of infant formulas, yoghurt, cheese, and milk-based confectioneries including chocolate and pastry. Therefore, it is important to determine AFM₁ levels in milk and dairy products in order to protect consumers in various age groups, from its potential hazards¹⁰. The Commission of the European Communities has set at 50 ng/L for AFM₁ in raw milk, heat-treated milk and milk for the manufacture of milk-based products. However, the maximum level of AFM₁ in infant formulae¹¹ has been set at 25 ng/L. The maximum limit has been fixed¹² by Turkish government in milk at 50 ng/L.

Taking all this information into account, the purpose of this survey was to investigate the occurrence and levels of AFM₁ in samples of raw ewe's milk used cheese and yoghurt manufacturing in Sanliurfa, Turkey.

EXPERIMENTAL

Sampling: Ninety samples of raw ewe's milk were analyzed for the presence of AFM₁. Samples were obtained from two dairies (A and B) located in the province of Sanliurfa. At each dairy, a total of 9 sampling (5 samples from each unit) were performed on a weekly basis from March to April 2006. The samples were taken in 500 mL quantities and transported within an insulated container at about 4 °C for analysis. Samples were protected against light until the day of analysis. Analysis of samples was carried out in less than 24 h from the time of their arrival in the laboratory.

Method: The AFM₁ concentrations of the samples were determined by competitive ELISA method (RIDASCREEN AFM1 Art no: R1101; R-Biopharm GmbH, Darmstadt, Germany) according to the procedure described by R-Biopharm GmbH¹³. This method is the test procedure employed by the German Federal Board of Health.

Preparation of samples: Ten mL aliquots of milk samples were chilled to 10 °C and then centrifuged for degreasing 10 min at 3500 g. After centrifugation, the upper cream layer was completely removed by aspirating with a Pasteur pipette and skimmed milk was used directly in the test.

ELISA test procedure: A sufficient number of microtiter wells were inserted into the microwell holder for all standards and samples. 100 μ L standard solutions and prepared samples were added in separate wells and incubated for 1 h at room temperature (20 °C) in the dark. The liquid was removed from the wells and the microwell holder was tapped upside down vigorously (3 times in a row) against absorbent paper to ensure complete removal of liquid from the wells. Then the wells were washed twice with 250 μ L of distilled water. 100 μ L of the diluted

1968 Ardic

Asian J. Chem.

enzyme conjugate (peroxidase conjugated AFM₁) was added and incubated for 1 h at room temperature in the dark. The wells were again washed with 250 μ L of distilled water as described above. In the next stage, 50 μ L of substrate (urea peroxidase) and 50 μ L of chromogen (tetramethylbenzidine) were added to each well and mixed thoroughly and incubated for 0.5 h at room temperature in the dark. Then 100 μ L of the stop reagent (1 N H₂SO₄) was added to each well and mixed and the absorbance was measured at 450 nm in ELISA reader (ELX-800, Bio-Tek Instruments, Winooski, VT, USA).

Evaluation: The samples were evaluated according to the Rida Soft Win computer program (RIDAVIN.EXE) prepared by R-Biopharm. The lowest detection limit is 5 ng/L, the recovery rate 95 % and the average coefficient of variation 15 % for spiked milk.

RESULTS AND DISCUSSION

The data in Table-1 show that 88.9 % of the samples tested contaminated with AFM₁. The incidence of AFM₁ in milk from A and B dairies was 77.8 and 100 %, respectively. AFM₁ concentrations in the samples tested ranged from 17 to 232 ng/L. Eleven samples from dairy A and 44 samples from dairy B exceed the maximum level of 50 ng/L set by the Turkish and European regulations for AFM₁ in raw milk. A total of 61.1 % of the samples tested exceeded 50 ng/L. The highest contamination level of AFM1 (232 ng/L) was found in milk produced by dairy B. These findings indicate that animal feeds in Sanliurfa have probably been contaminated with high levels of AFB₁.

TABLE-1
OCCURRENCE AND DISTRIBUTION OF AFLATOXIN \mathbf{M}_1 IN RAW MILK SAMPLES
Samples

Dairy	Analyzed	Positive ^a n	Distribution n (%)			Concentration ^c (ng/L)	
	(n)	(%)	< 5 ng/L	5-50 ng/L	$> 50^{\rm b} ng/L$	Mean \pm SD	Range
А	45	35 (77.8)	10 (22.2)	24 (53.3)	11 (24.4)	50.71±35.64	17-130
В	45	45 (100)	0 (0)	1 (2.2)	44 (97.8)	120.36±69.04	50-232
Total	90	80 (88.9)	10 (11.1)	25 (27.8)	55 (61.1)	89.89±66.41	17-232

^a ≥ 5 ng/L; ^bExceed Turkish legal limit; ^cPositive samples.

The consumption of ewe's milk is very common in Sanliurfa and other provinces in the southeast Anatolia region of Turkey. Since milk production is generally carried out in spring, the present survey was conducted from March to April. Zinedine *et al.*¹⁴, Kamhar¹⁵ and Ghiasian *et al.*¹⁶ reported AFM₁ contamination in a large percentage of milk samples collected in winter, but Bakirci¹⁷ obtained similar results from samples collected in March, April and May. Several studies have noted lower AFM₁ in milk samples collected during the summer months^{14,17,18}. This phenomenon was attributed to the fact that lactating animals are receiving less contaminated feeds in summer time when they are grazing. Thus, the overall incidence of AFM₁ observed in the present study might be attributed to the fact that during cold weather periods dairy ewes are usually fed higher amounts of concentrated feeds.

The relationship between AFB₁ content of feed and AFM₁ concentration in milk is well established^{2,7,8}. The most important impact on the amount of AFB₁ in feeds is undoubtedly temperature and moisture, because some aflatoxin producing moulds can easily grow in feeds having moisture between 13 and 18 % and environmental moisture between 50 and 60 %, whereas they can also produce toxin under conditions of 25 °C, and 85 and 90 % relative humidities^{17,19}.

Since milk is a major commodity for introducing aflatoxins in the human diet, many studies have been done in Turkey and other countries. Other studies in Turkey have reported lower AFM₁ contamination rates (58.1 to 70.83 %) than the current study^{10,20,21}. The concentrations of AFM₁ observed by Akdemir and Altintas²⁰ and Unusan²¹ in raw and pasteurized milks (10 to 817 ng/L) were higher than values observed here, but Gurbay *et al.*¹⁰ observed lower concentrations (10 to 50.5 ng/L) in ultra high temperature and pasteurized milks. The present results are in agreement with those obtained by Bakirci¹⁷, who reported 87.8 % of raw milk samples contaminated and concentrations of AFM₁ ranging from 12.5 to 120 ng/L. Similarly, Celik *et al.*²² found AFM₁ concentrations of 5.2 to 127.6 ng/L in 88.2 % of the pasteurized milk samples examined.

In comparison to studies performed in other countries, the AFM₁ contamination rates in raw ewe's milk samples reported here are higher than those reported for Argentina²³, Brazil²⁴⁻²⁷, Greece^{18,28}, India²⁹, Iran¹⁵, Italy³⁰ and Kuwait³¹. On the other hand, concentrations of AFM₁ observed by Sassahara *et al.*²⁵ in raw milk (258 to 1998 ng/L) were higher than values observed in the present study. The present results are in agreement with those obtained by Zinedine *et al.*¹⁴, who observed AFM₁ concentrations of 1 to 117 ng/L in 88.8 % of the samples of pasteurized milk traded in Morocco and Kamhar¹⁵, who found concentrations of 15 to 280 ng/L in Iranian raw milk. Conversely, Alborzi *et al.*³² reported finding AFM₁ in 100 % of the raw milk samples traded in Iran with concentrations of 45 to > 80 ng/L.

In summary, 61.1 % of the ewe milk samples tested were found to contain concentrations of AFM₁ higher than maximum acceptable level of 50 ng/L established by Turkish Food Codex. This appears to be a serious problem for the public health, since all the age groups including infants and children consume milk and dairy products. With regard to AFM₁, milk and dairy products have to be inspected and controlled.

REFERENCES

- 1. M.J. Sweeney and A.D.W. Dobson, Int. J. Food Microbiol., 43, 141 (1998).
- 2. E.E. Creppy, *Toxicol. Lett.*, **127**, 19 (2002).
- 3. B.T. Iamanaka, H.C. de Menezes, E. Vicente, R.S.F. Leite and M.H. Taniwaki, *Food Control*, **18**, 454 (2007).
- 4. P. Rosi, A. Borsari, G. Lasi, S. Lodi, A. Galanti, A. Fava, S. Girotti and E. Ferri, *Int. Dairy J.*, **17**, 429 (2007).

1970 Ardic

- IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, IARC Scientific Publication, Lyon, Vol. 56, p. 245 (1993).
- 6. F. Galvano, V. Galofaro and G. Galvano, J. Food Prot., 59, 1079 (1996).
- 7. A. Pittet, Rev. Med. Vet., 149, 479 (1998).
- 8. H.P. Van Egmond, Mycotoxins in Dairy Products, Elsevier Applied Science, London, p. 10 (1989).
- 9. C. Cavaliere, P. Foglia, E. Pastorini, R.Samperi and A. Lagana, J. Chromatogr. A, 1101, 69 (2006).
- 10. A. Gurbay, S. Aydin, G. Girgin, A.B. Engin and G. Sahin, Food Control, 17, 1 (2006).
- 11. Commission Regulation (EC) No 1881/2006 of 19 December 2006, *Off. J. Eur. Union*, L364, 5 (2006).
- 12. Turkish Food Codex, Resmi Gazete, Sayi 24885, Basbakanlik Basimevi, Ankara (2002).
- R-Biopharm GmbH, Enzyme Immunoassay for the Quantitative Analysis of Aflatoxin M₁ Ridascreen Aflatoxin M₁ Art. No. R1101. R-Biopharm GmbH, Darmstadt (1999).
- A. Zinedine, L. Gonzalez-Osnaya, J.M. Soriano, J.C. Molto, L. Idrissi and J. Manes, *Int. J. Food Microbiol.*, 114, 25 (2007).
- 15. A. Kamhar, Food Control, 16, 593 (2005).
- S.A. Ghiasian, A.H. Maghsood, T.R. Neyestani and S.H. Mirhendi, J. Food Safety, 27, 188 (2007).
- 17. I. Bakirci, Food Control, 12, 47 (2001).
- 18. V. Roussi, A. Govaris, A. Varagouliy and N.A. Botsoglou, Food Addit. Contam., 19, 863 (2002).
- 19. J.M. Jay, Modern Food Microbiology, Chapman & Hill, New York, edn. 4, p. 1 (1992).
- 20. C. Akdemir and A. Altintas, Ankara Univ. Vet. Fak. Derg., 51, 175 (2004).
- 21. N. Unusan, Food Chem. Toxicol., 44, 1897 (2006).
- 22. T.H. Celik, B. Sarimehmetoglu and O. Kuplulu, Vet. Arhiv., 75, 57 (2005).
- 23. C.E. Lopez, L.L. Ramos, S.S. Ramadan and L.C. Bulacio, Food Control, 14, 31 (2003).
- 24. N.S. Garrido, M.H. Iha, M.R.S. Ortolani and R.M.D. Favaro, Food Addit. Contam., 20, 70 (2003).
- 25. M. Sassahara, D.P. Netto and E.K. Yanaka, Food Chem. Toxicol., 43, 981 (2005).
- 26. C.A. Oliveira, J. Rosmaninho and R. Rosim, Food Addit. Contam., 23, 196 (2006).
- 27. C.A.F. Oliveira and J.C.O. Ferraz, Food Control, 18, 375 (2007).
- I. Kaniou-Grigoriadou, A. Eleftheriadou, T. Mouratidou and P. Katikou, *Food Control*, 16, 257 (2005).
- 29. S. Rastogi, P.D. Dwivedi, S.K. Khanna and M. Das, Food Control, 15, 287 (2004).
- 30. F. Galvano, V. Galofaro, A. Ritieni, M. Bognanno, A. De Angelis and G. Galvano, *Food Addit. Contam.*, **18**, 644 (2001).
- V.P. Srivastava, A. Bu-Abbas, A. Basuny, W. Al-Johar, S. Al-Mufti and M.K.J. Siddiqui, *Food Addit. Contam.*, 18, 993 (2001).
- 32. S. Alborzi, B. Pourabbas, M. Rashidi and B. Astaneh, Food Control, 17, 582 (2006).

(Received: 11 March 2008; Accepted: 10 November 2008) AJC-7013