Asian Journal of Chemistry

# Synthesis and Characterization of Iron(III) and Uranyl(II) Complexes of Some Salicyloylhydrazones

B. SENTHIL SIVAKUMAR\*† and A.MANIMEKALAI Department of Chemistry, Annamalai University, Annamalai Nagar-608 002, India

E-mail: bsenthil@svce.ac.in

Iron(III) and uranyl(II) complexes of salicyloyl hydrazones derived from 2,6-diphenylpiperidin-4-one (DPSH) and 3-methyl-2,6-diphenylpiperidin-4-one (MDPSH) were prepared and characterized by elemental analysis, conductance, magnetic, cyclic voltammetric and spectral studies. UO<sub>2</sub>(II) complexes derived from DPSH and MDPSH have 1:1 and 2:1 metal to ligand stoichiometries, respectively. The metal ligand ratio was found to be 1:3 in Fe(III)-DPSH complex and 1:2 in Fe(III)-MDPSH complex. Based on the relevant data probable structure of the complexes were proposed.

#### Key Words: Salicyloylhydrazone complexes, Iron(III), Uranyl(II).

### **INTRODUCTION**

The study of hydrazones and their complexes are growing due to their wide range of applications in biological processes such as in treatment of tumour, tuberculosis, leprosy and mental disorder<sup>1,2</sup>. They also find application in the field of analytical chemistry as extraction reagents for spectroscopic determination<sup>3-5</sup>. Literature survey shows many reports on aroylhydrazones complexes derived from aliphatic, aromatic and heteroaromatic carbonyl compounds. However studies on aroyl hydrazones derived from saturated heterocyclic carbonyl compounds are less. In continuation of our work on metal complexes of aroyl hydrazones, herein, the synthesis and characterization of aroyl hydrazones (**Scheme-I**) and their UO<sub>2</sub>(II) and Fe(III) complexes are reported.

### **EXPERIMENTAL**

The ligands 2,6-diphenylpiperidin-4-one salicyloyl hydrazone (DPSH) and 3methyl-2,6-diphenylpiperidin-4-one (MDPSH) were prepared as reported in literature by reacting salicyloyl hydrazide with corresponding heterocyclic ketones and characterized by spectral studies<sup>6</sup>.

**Preparation of DPSH complexes:** Ligand DPSH (1.93 g, 5 mmol) and the metal salt (ferric chloride hexahydrate. 1.35 g and uranyl acetate dihydrate 2.12 g, 5 mmol each) were mixed in 75 mL ethanol and refluxed for *ca*. 8 h. The resulting solution was allowed to stand overnight. A solid product obtained was filtered,

<sup>†</sup>**Present Address:** Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur-602 105, India

Vol. 21, No. 7 (2009)

washed thoroughly with hot benzene and then with hot water and then dried over calcium chloride in a desiccator.



**Preparation of FeCl<sub>3</sub> MDPSH complex:** To a solution of MDPSH (2.0 g, 5 mmol) in 20 mL DMF, methanolic solution of ferric chloride hexahydrate 1.35 g, 5 mmol) was added and refluxed for 5 h. The complexes separated out were filtered, washed well with hot benzene, then with hot water and dried over calcium chloride in a desiccator.

**Preparation of UO<sub>2</sub>(OAc)<sub>2</sub> MDPSH complex:** To a hot well stirred solution of uranyl acetate dihydrate (1.7 g in methanol, 4 mmol) dry finely powdered ligand MDPSH (1.6 g, 4 mmol) was added slowly. After the addition of ligand was over, stirring was continued for another 15 min. The mixture was heated under reflux for 8 h and then allowed to cool at room temperature and kept overnight. Precipitated complex was filtered, washed with methanol and then with hot water and dried over calcium chloride in a desiccator.

**Analyses:** Elemental analysis were carried out in HCE1108 elemental analyzer at Central Drug Research Institute (CDRI), Lucknow.The metal contents were estimated after decomposition with concentrated H<sub>2</sub>SO<sub>4</sub> as reported<sup>7</sup>. The infrared spectra of the ligands and metal complexes in the region 4000-400 cm<sup>-1</sup> were recorded on NA 360 FT-IR spectrometer using potassium bromide discs. Electronic spectra of the ligands and their complexes were recorded on HITACHI MODEL UV-2001 double beam spectrophotometer. The spectra were recorded in DMF solvent in the range 200-800 nm. Conductivities in DMF [10<sup>-3</sup> M] were measured using electrolytic resistance bridge. The magnetic susceptibility measurements were made at room temperature using EG and G Model 155 vibrating sample magnetometer at RSIC, IIT, Chennai. Cyclic voltammetric studies were carried out using a model ECDA-001, basic electrochemistry system. A three electrode configuration comprising glassy carbon working electrode, platinum wire counter electrode and Ag/AgCl reference electrode at room temperature in deareated DMF using tetra butylammonium perchlorate as supporting electrolyte.

5230 Sivakumar et al.

Asian J. Chem.

## **RESULTS AND DISCUSSION**

All the complexes are non-hygroscopic in nature, stable in air and are insoluble in water, ethanol, methanol, chloroform and dichloromethane, but soluble in coordinating solvents like dimethyl formamide and dimethyl sulphoxide. The physical and analytical data of the complexes are displayed in Table-1. The analytical data show that  $UO_2(II)$  complexes derived from DPSH and MDPSH have 1:1 and 2:1 metal to ligand stoichiometries, respectively. The metal ligand ratio was found tobe 1:3 in Fe(III)-DPSH complex and 1:2 in Fe(III)-MDPSH complex. The ligand DPSH behaves as neutral/uninegative bidentate ligand during coordination. In MDPSH complexes, the ligand MDPSH acts as mononegative/neutral bidentate/tetradentate ligand. Conductivity studies were performed for all the complexes in DMF. The observed molar conductance values are in the range 6-15 ohm<sup>-1</sup> cm<sup>2</sup> mol<sup>-1</sup> and the values show non-ionic nature of all the complexes. The molar conductance data also support the formulae proposed for all the complexes based on analytical data obtained. The magnetic moment values were calculated for Fe(III) complexes from the susceptibility measurements after correcting for diamagnetic contributions. These values correspond to the presence of only one unpaired electron suggesting strong field nature of the ligands in complexes. The electronic spectra of the complexes were recorded in DMF in the region 200-800 nm and the relevant spectral data are tabulated in Table-2. The absorptions below 350 nm in all the complexes are attributed to the transitions within the ligand molecules. The Fe(III)-MDPSH complex exhibits bands at 370 and 440 nm and these are assigned to charge transfer transition<sup>8</sup> and d-dtransition respectively<sup>9,10</sup>. The IR spectra of the complexes were recorded as KBr disc in the region 4000-400 cm<sup>-1</sup> and the data are furnished in Table-3 In all the complexes, broad bands of medium intensity centered around 3450-3000 cm<sup>-1</sup> are attributed to v(N-H) and v(O-H) present in the complexes<sup>11</sup>. The bands due to v(C=O)around 1600 cm<sup>-1</sup> exhibit a shift to lower frequencies in complexes compared to the ligands. Moreover, the bands due to v(C=N) are also shifted to lower frequencies in complexes. This indicates that both carbonyl oxygen and azomethine nitrogen are involved in coordination in these complexes<sup>12,13</sup>. In UO<sub>2</sub>(II) complexes, the presence

| Compd.                         | m.f.                                                                                          | F.Wt. Yie           |      | Dp        | Micro analysis data (%):<br>Found (Calcd.) |                |                 |                  |
|--------------------------------|-----------------------------------------------------------------------------------------------|---------------------|------|-----------|--------------------------------------------|----------------|-----------------|------------------|
|                                |                                                                                               | (colour)            | (70) | (C) = (C) | С                                          | Н              | Ν               | М                |
| Fe(III)-<br>DPSH               | [Fe(LH)L <sub>2</sub> OH]<br>C <sub>72</sub> H <sub>20</sub> N <sub>2</sub> O <sub>7</sub> Fe | 1227.34<br>(Brown)  | 50   | 192       | 71.00<br>(70.45)                           | 5.08<br>(5.59) | 9.51<br>(10.27) | 4.48<br>(4.55)   |
| UO <sub>2</sub> (II)-<br>DPSH  | $[UO_{2}L(OAc)(H_{2}O)]\cdot 3H_{2}O$<br>$C_{26}H_{33}N_{3}O_{10}U$                           | 785.50<br>(Orange)  | 50   | > 300     | 39.15<br>(39.72)                           | 3.22<br>(4.20) | 4.98<br>(5.35)  | 29.24<br>(30.30) |
| Fe(III)-<br>MDPSH              | $[Fe(LH)_2Cl_2]CH_3OH \\ C_{51}H_{54}N_6O_5Cl_3Fe$                                            | 992.30<br>(Brown)   | 60   | 220       | 61.41<br>(61.61)                           | 4.78<br>(5.44) | 9.27<br>(8.46)  | 6.50<br>(5.62)   |
| UO <sub>2</sub> (II)-<br>MDPSH | $[(UO_2)_2L(OAc)_2(H_2O)OH] \\ C_{29}H_{33}N_3O_{12}U$                                        | 1091.69<br>(Orange) | 60   | > 300     | 32.02<br>(31.88)                           | 3.04<br>(3.02) | 3.62<br>(3.85)  | 42.71<br>(43.60) |

| TABLE-1                                                                    |
|----------------------------------------------------------------------------|
| PHYSICAL AND ANALYTICAL DATA OF Fe(III) AND UO <sub>2</sub> (II) COMPLEXES |

Values within parentheses are calculated values; L = anionic ligand, LH = neutral ligand.

Vol. 21, No. 7 (2009)

### Fe(III) and UO<sub>2</sub>(II) Complexes of Salicyloylhydrazones 5231

### TABLE-2 ELECTRONIC SPECTRAL, CONDUCTIVITY AND MAGNETIC MOMENT DATA OF Fe(III) AND UO<sub>2</sub>(II) COMPLEXES

| Complex                    | $\lambda_{max}$ (nm) | $\Lambda_{\rm m}  (\Omega^{-1}  {\rm cm}^2  {\rm mol}^{-1})$ | $\mu_{eff}$ (BM) |
|----------------------------|----------------------|--------------------------------------------------------------|------------------|
| Fe(III)-DPSH               | 310                  | 15.80                                                        | 1.56             |
| UO <sub>2</sub> (II)-DPSH  | 305, 375             | 9.58                                                         | -                |
| Fe(III)-MDPSH              | 300, 370, 440        | 6.59                                                         | 1.78             |
| UO <sub>2</sub> (II)-MDPSH | 305, 415             | 12.14                                                        | _                |

|                                | TABLE-3       |                        |          |
|--------------------------------|---------------|------------------------|----------|
| IR DATA (cm <sup>-1</sup> ) OF | F Fe(III) AND | UO <sub>2</sub> (II) C | OMPLEXES |

| DPSH | А    | В      | MDPSH | С       | D      | Assignment                             |  |
|------|------|--------|-------|---------|--------|----------------------------------------|--|
| 3727 | 3726 |        | 3757  |         | 3789,  | ν(OH)                                  |  |
|      |      |        |       |         | 3701   |                                        |  |
| 3250 | 3241 | 3400   | 3409  | 3450    | 3190   | v(NH) amide + $v(OH)$                  |  |
| 3059 | 3028 | 3214   | 3296  | 3253    |        |                                        |  |
| 3030 |      | 3060   | 3026  | 3060    |        | v(NH) ring                             |  |
| 1632 | 1628 | 1606   | 1608  | 1599    | 1605   | v(C=O)                                 |  |
|      |      | 1573   |       |         | 1571   | $v_{as}(OCO)$                          |  |
| 1604 | 1560 | 1530   | 1557  | 1530(w) | 1527   | v(C=N)                                 |  |
| 1306 | 1309 |        | 1363  | 1374    |        | Bending vibration of phenolic OH group |  |
|      | 1375 |        |       | 1314    |        | δ(OH)                                  |  |
|      |      | 1317   |       |         | 1319   | $v_{as}(OCO)$                          |  |
| 1233 | 1235 | 1249   | 1237  | 1251    | 1249   | Amide III band                         |  |
| 1151 | 1154 | 1153   | 1155  | 1157    | 1152   | v(C-O) phenolic                        |  |
| 1032 | 1031 | 1033   | 1049  | 1035    | 1029   | v(N-N)                                 |  |
|      |      | 907(s) |       |         | 903(s) | $v_{asy}(UO_2)$                        |  |
|      | 856  |        |       | 857     |        | Fe-OH bending mode                     |  |
|      | 534  | 585    |       | 585     | 585    | ν(M-O)                                 |  |
|      |      | 510    |       | 505     | 506    |                                        |  |
|      | 403  | 405    |       | 444     | 409    | v(M-N)                                 |  |

 $A = [Fe(LH)(L_2)OH]; B = [UO_2L(OAc)H_2O] \cdot 3H_2O; C = [Fe(LH)_2Cl_3]CH_3OH;$ 

 $D = [(UO_2)_2 L(OAc)_2 (H_2 O)OH]$ 

of acetate anion is confirmed by the observation of new bands around 1570 and 1320 cm<sup>-1</sup> and these bands are due to  $v_{as}(OCO)$  and  $v_{sym}(OCO)$  modes, respectively<sup>13,14</sup>. The mode of coordination of acetate group (unidentate or bidentate) can be determined by finding out the difference ( $\Delta$ ) between two v(OCO) bands<sup>15</sup>. If the difference,  $\Delta$  is much larger than free acetate ion (144 cm<sup>-1</sup>) then it coordinates through unidentate fashion and if it is much smaller, bidentate behaviour is expected. In the present study large difference between the two v(OCO) bands (252 cm<sup>-1</sup>) was noted and it confirms unidentate coordinating behaviour of acetate ion in these complexes<sup>14</sup>. The new intense bands appeared at 907 cm<sup>-1</sup> in UO<sub>2</sub>(II)-DPSH complex and 903 cm<sup>-1</sup> in UO<sub>2</sub>(II)-MDPSH complex are attributed to the asymmetric stretching vibration of the UO<sub>2</sub> group present in the complexes<sup>16</sup>. Deprotonation of the phenolic hydroxyl

5232 Sivakumar et al.

Asian J. Chem.

group of the ligands DPSH and MDPSH in UO<sub>2</sub>(II) complexes is evidenced from the absence of bands due to  $\delta_{OH}$  in the region 1300 cm<sup>-1</sup>. In Fe(III)-DPSH complex, the new peak observed at 1375 cm<sup>-1</sup> is attributed to the bending mode of hydroxyl ligand present in the complex. The presence of solvent CH<sub>3</sub>OH<sup>8</sup> is evidenced from the observation of  $\delta_{OH}$  mode at 1314 cm<sup>-1</sup> in Fe(III)-MDPSH complex. The neutral bidentate behaviour of both the ligands in Fe(III)-MDPSH complex and one of the ligands in Fe(III)-DPSH complex is confirmed from the absence of appreciable change in the bending vibration of phenolic OH group  $\delta_{OH}$  in these complexes. The bands in the region 600-400 cm<sup>-1</sup> are due to v(M-O) and v(M-N) modes<sup>12,13</sup>. The electrochemical behaviour of all the complexes and the ligand MDPSH have been investigated through cyclic voltammetric studies and the results are tabulated in Table-4. The ligand MDPSH however exhibits a different electrochemical behaviour compared to DPSH in solution<sup>17</sup>. Absence of cathodic peak indicates that the reduction of carbonyl group does not occur in the working potential range. Probably the ligand MDPSH may exists predominantly in the enolic form in solution as shown below and the enolic form contributes more to the electrochemical behaviour than the keto form.



 TABLE-4

 CYCLIC VOLTAMMETRIC DATA OF Fe(III) AND UO2(II) COMPLEXES

| Commound                   | Electrochemical reduction |             | Electrochemical oxidation |             |                   |
|----------------------------|---------------------------|-------------|---------------------------|-------------|-------------------|
| Compound                   | $E_{pc}(V)$               | $E_{pa}(V)$ | $E_{pa}(V)$               | $E_{pc}(V)$ | $\Delta E_{p}(V)$ |
| DPSH                       | - 1.05                    | _           | + 0.92                    | -           | -                 |
| Fe(III)-DPSH               |                           | -           | + 1.71                    | _           | -                 |
| UO <sub>2</sub> (II)-DPSH  | - 0.23                    | -           | + 1.73                    | -           | -                 |
| MDPSH                      | _                         | -           | + 1.20                    | -           | -                 |
|                            |                           |             | + 1.79                    |             |                   |
| Fe(III)-MDPSH              | - 1.37                    | -           | + 0.33                    | +0.46       | -                 |
|                            |                           |             | + 1.46                    |             |                   |
|                            |                           |             | + 1.76                    |             |                   |
| UO <sub>2</sub> (II)-MDPSH | - 0.19                    | -           | + 1.28                    | -           | -                 |
|                            |                           |             | + 1.55                    |             |                   |

The presence of two anodic peaks during electrochemical oxidation of the ligand MDPSH also supports that the ligand MDPSH mainly exists in the enolic form than in the keto form. The anodic potentials at +1.20 V and +1.79 V for the ligand MDPSH correspond to the oxidation of enolic OH/amide NH and phenolic OH group, respectively. Comparison of peak potentials of the ligand with complexes reveals that the reduction processes are metal centered. Absence of peaks in the

Vol. 21, No. 7 (2009)

### Fe(III) and UO<sub>2</sub>(II) Complexes of Salicyloylhydrazones 5233

reverse scan indicates that the reduction processes are irreversible in nature. The cathodic peak at -0.23 V in UO<sub>2</sub>(II)-DPSH complex and -0.19 V in UO<sub>2</sub>(II)-MDPSH complex are probably due to the reduction<sup>18</sup> of UO<sub>2</sub><sup>2+</sup>  $\rightarrow$  UO<sub>2</sub>. The reduction process Fe<sup>3+</sup>  $\rightarrow$  Fe<sup>2+</sup> is responsible for the peak at -1.37 V in Fe(III)-MDPSH complex<sup>19,20</sup>. Comparison of anodic peak potentials of the ligand MDPSH and its complexes reveals that oxidation processes are mainly ligand centered oxidation and more-over the irreversible nature of the oxidation process is evident from the absence of peaks in the reverse scan. In the case of Fe(III)-MDPSH complex, a small hump is observed at + 0.33 V which probably corresponds to the oxidation of methanol associated in the complex. The cathodic peak at 0.46 V is probably due to absorption peak. In DPSH complexes there is a vast difference in the oxidation potentials compared to the free ligand DPSH. The high anodic potentials around + 1.7 V probably corresponds to the oxidation of phenolic OH which is intramolecularly hydrogen bonded with amide NH in the complexes. Based on experimental evidences, the probable structures of the complexes are predicted to be



5234 Sivakumar et al.

Asian J. Chem.

### REFERENCES

- 1. J. Cymerman-Craig, D. Wills, S.D. Rubbo and J. Edgar, *Nature*, **176**, 34 (1995).
- 2. Z.H. Chohan and A. Rauf, Synth. React. Inorg. Met.-Org. Chem., 26, 591 (1996).
- 3. S.S. Patil and A.D. Sawant, Indian J. Chem., 37A, 1038 (1998).
- 4. M. Sivaramiah and P.R. Reddy, J. Indian Chem. Soc., 84, 706 (2007).
- 5. M.R. Rao, K. Hari, N. Devanna and K.B. Chandrasekhar, Asian J. Chem., 20, 1402 (2008).
- 6. A. Manimekalai, B.S. Sivakumar and T. Maruthavannan, Indian J. Chem., 43B, 1753 (2004).
- A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, ELBS Publication, edn. 4, p. 741, 487 (1978).
- 8. P.M. Reddy, K.A. Kumar, K.M. Raju and N.M. Murthy, Indian J. Chem., 39A, 1182 (2000).
- 9. D.K. Rastogi, S.K. Dua, V.B. Rana and S.K. Sahni, J. Inorg. Nucl. Chem., 40, 1323 (1978).
- K. Dey, P.K. Bhattacharya, D. Bandyopadhyay, K. Chakraborty and A.K. Mallick, *Indian J. Chem.*, 34A, 529 (1995).
- 11. R.M. Silverstein and F.X. Webster, Spectrometric Identification of Organic Compounds, John Wiley and Sons, Inc., edn. 6 (1996).
- 12. K.K. Narang and V.P. Singh, Synth. Reat. Inorg. Met.-Org. Chem., 23, 971 (1993).
- 13. R.A. Lal, M.N. Singh and S. Das, Synth. React. Inorg. Met.-Org. Chem., 16, 513 (1986).
- 14. R.A. Lal, M.N. Singh and R.K. Thappa, *Indian J. Chem.*, **26A**, 883 (1987).
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience Publication, edn. 3 (1978).
- 16. G. Sobhanadevi and P. Indrasenan, Indian J. Chem., 27A, 809 (1988).
- 17. A. Manimekalai and B.S. Sivakumar, Indian J. Chem., 45A, 1362 (2006).
- J.C. Bailar, H.J. Emeleus, Sir Ronald Nyholm and A.F. Trotman-Dickenson, Comprehensive Inorganic Chemistry, Pergamon Press, New York, p. 5, 84, 519 (1973).
- S.G. Wilkinson, R.D. Gillard and J.A. Mccleverty, Comprehensive Coordinartion Chemistry, Pergamon Press, p. 259 (1987).
- 20. K. Ramesh and R. Mukherjee, J. Chem. Soc., Dalton Trans., 83 (1992).

(Received: 14 August 2008; Accepted: 29 April 2009) AJC-7459