Asian Journal of Chemistry

Vol. 21, No. 7 (2009), 5167-5170

Synthesis and Structure - Property Relations in xFe_2O_3 (1-x)Bi₂O₃ (0.1 $\leq x \leq 0.5$) (A1-A5: x = 0.1, 0.2, 0.3, 0.4, 0.5) Glasses

B.B. DAS, DEEPA* and RAMANATHAN

Department of Chemistry, Pondicherry University, Pondicherry-605 014, India E-mail: md00092000@yahoo.co.in

Synthesis of the xFe₂O₃ (1-x)Bi₂O₃ (0.1 \le x \le 0.5) (A1-A5: x = 0.1, 0.2, 0.3, 0.4, 0.5) glasses was done *via* nitrate-citrate gel route. Glassy phase is ascertained by XRD studies. Magnetic susceptibility results in the range 4.2-400 K show ferromagnetic nature with exchange integrals ~60 μ eV in the glasses. The electron paramagnetic resonance in the range 4.2-363 K shows g = 2.0 and g = 4.3 which are due to octahedral symmetry with tetragonal distortion and tetrahedral [FeO_{4/2}]² symmetry with rhombic distortion, respectively of Fe³⁺ (3*d*⁵) ions.

Key Words: Synthesis, Structural property, Glasses.

INTRODUCTION

Fe₂O₃-containing glasses exhibit interesting electrical conductivity¹ where electrical conductivity is due to hopping of small polaron² from the Fe²⁺ (3*d*⁶) to Fe³⁺ (3*d*⁵) state. Bi₂O₃-containing glasses also exhibit interesting change in coordination number of bismuth in the glasses³. In this paper, the structural-property relations in xFe₂O₃-(1-x)Bi₂O₃ (0.1 $\leq x \leq 0.5$) glasses are reported mainly by EPR spectroscopy and magnetic susceptibility measurements.

EXPERIMENTAL

Reagent grade ferric nitrate and bismuth nitrate solutions of 0.01 M each and 2 M citric acid solutions were used to prepare the sol which was air dried *ca*. 60 °C to get the gel. The gel was then decomposed into fine powder at 120 °C and then melted in silica crucibles *ca*. 1073-1133 K and air quenched to prepare the glass. The powder XRD of the samples was recorded on a RIKAGU MINIFLEX X-ray diffractometer using CuK α radiation in the range 5° to 80° in 2 θ . The differential scanning calorimetric (DSC) traces were recorded on a universal V2.6D TA instruments in the range 30-550 °C. The concentrations of the Fe²⁺ and Fe³⁺ ions were determined by wet chemistry method and the density by liquid displacement method. The IR spectra were recorded at 300 K in the range 4000-400 cm⁻¹ by an FTIR-8700 spectrometer using KBr pellet technique. Magnetic Susceptibility data in the range 4.2-300 K were recorded with a SQUID magnetometer in a magnetic field of 3 kG. X-band EPR data at 300 and 77 k were recorded with a Jeol JES-TE 100 ESR spectrometer with 100 KHz field modulation. The magnetic field calibration was

5168 Das et al.

Asian J. Chem.

done with DPPH ($g_{DPPH} = 2.00354$), which is used as a field 'marker'. The EPR data at 4.2 K were recorded at X-band on a varian EPR spectrometer using an Air products Helitran cryostat. The magnetic field was calibrated using a Varian NMR Gauss meter.

RESULTS AND DISCUSSION

The powder XRD patterns of A1-A5 show broad peak around 30° in 2θ , which vanishes at higher diffraction angles⁴ typical of glassy phase. However, in the case of samples A1 and A2 a few diffraction peaks are observed with weak intensities and characterized due to the polycrystalline Bi₂O₃ dispersed in the glassy phase. Using the Scherer relation⁵ the average crystallite sizes in A1 and A2 are determined which are found to be in the range 142.28-430.54 Å and 43.14-430.54 Å, respectively. The DSC traces in the range 27-600 °C show that the glass transition temperature, T_g , increases from *ca*. 440-480 °C with increasing Fe₂O₃ content. The densities of the glasses A1-A5 are found to be 2.188, 2.620. 2.415, 2.154 and 2.289 g/cm³ while the concentrations of Fe²⁺ and Fe³⁺ ions are found to be in the range 6.38×10^{20} - 1.45×10^{21} ions/g and 5.0×10^{19} -7.93 $\times 10^{19}$ ions/g, respectively. The values of the small polaron radius, r_p and the average transition-metal ion separation, R, are calculated using the relations reported earlier⁶ and are shown in the Table-1. The values of r_p are found to be consistently less than that of R in each case. The IR spectra at 300 K show the presence of pyramidal $[BiO_{2/2}O]^-$ (symmetric bending⁷: 471-481 cm⁻¹; symmetric strech⁷: 530 cm⁻¹; asymmetric stretch⁸: 830 cm⁻¹) unit and Fe-O 9880 cm⁻¹ bonds⁹ in the glasses.

TABLE-1CALCULATED SMALL POLARON RADIUS, r_p , av. TRANSITION METALSEPARATION, R, IN THE GLASSES A1-A5 of xFe_2O_3 -(1-x)Bi₂O₃ (0.1 ≤ x ≤ 0.5) SYSTEM

Glass No.	$r_{p}(Å)$	R (Å)	Curie constant C (emu K/g)	Weiss constant θ (K)	TIP (emu/g)	Exchange integral j (µeV)
A1	4.44	5.65	13.459	-4.09	0.5	60
A2	3.22	4.08	13.395	-4.08	0.5	60
A3	3.33	4.74	13.543	-4.10	0.5	60
A4	3.42	4.31	13.559	-4.11	0.5	60
A5	3.88	4.23	13.390	-4.07	0.5	60

Fig. 1 shows the plots of inverse magnetic susceptibility, χ^{-1} , *versus* absolute temperature, T (K) of the glasses A1-A5 in the range 4.2-473 K. The plots show Curie-Weiss behaviour of the samples in the above range. The plots are fitted to the relation, $C = C/(T+\theta) + TIP$, where C = Curie constant, $\theta = Weiss$ constant and TIP = temperature independent paramagnetism and the fitted values are shown in Table-1. The negative values of the Weiss constants show the ferromagnetic nature of the glasses. The calculated values of the exchange integrals¹⁰, j of the polarons are found to be *ca*. 60 μ eV(*ca*. 10¹¹ Hz).The TIP term is found to be 0.5 emu/g.

Fig. 1. Inverse magnetic susceptibility, χ^{-1} , *versus* absolute temperature, T (K) of the glasses A1-A5 in the range 4.2-473 K

Fig. 2 shows representative EPR line shapes of the glasses A1-A5 at 4.2 K. The resolutions of the line shapes are found to decrease gradually from 4.2 to 463 K and also at a particular temperature with increase in the Fe₂O₃ content. The calculated g-values are shown in Table-2. The free Fe³⁺ ($3d^5$) ion has ⁶S ground state. Table-2 shows two g-values around g = 2.0 and 4.3 in the glasses. Thus it is plausible to assume that the paramagnetic sites Fe³⁺ ($3d^5$) ions have octahedral [FeO_{6/2}] (g = 2.0) as well as tetrahedral [FeO_{4/2}]²⁻ (g = 4.3) symmetries¹⁰. The isotropic g-values of A1 and A2 at g = 2.0 at 4.2 K shifts to a higher value of g = 2.13 and finally smears out in A4 and A5. However, the resonance at g = 4.3 is found to persist in the samples A1-A5 over the range $0.1 \le x \le 0.5$ at 4.2 K. This result shows that tetragonal distortion of the octahedral [FeO_{6/2}]²⁻ unit is more rapid as compared with the rhombic distortion of the tetrahedral [FeO_{4/2}]²⁻ unit with increasing Fe₂O₃ content in the matrix. The similar result is observed in the glasses at higher temperatures also.

TABLE-2 OBSERVED g-VALUES OF THE GLASSES A1-A5 of xFe₂O₃-(1-x) Bi₂O₃ ($0.1 \le x \le 0.5$) at 4.2, 77, 300 and 363 K

Glass	4.2 K g-values		77 K g-values		300 K g-values		363 K g-values					
No.												
A1	2.00	4.30	1.99	4.05	2.03	4.23	2.04	-				
A2	2.00	4.30	2.01	4.21	2.02	4.23	2.02	-				
A3	2.13	3.50	2.06	4.21	2.02	-	1.99	-				
A4	-	3.70	2.00	4.20	2.02	-	2.08	-				
A5	-	3.50	2.00	4.30	2.02	-	-	-				

Fig. 2. EPR line shapes of glasses of glasses A1-A5 at 4.2 K

Conclusion

Powder XRD results ensured glass formation in the samples. IR-spectral results at 300 K show the presence of pyramidal $[BiO_{3/2}O]^-$ units in the glasses. The magnetic susceptibility studies in the range 4.2-400 K shows the ferromagnetic nature of the glasses. The calculated value of the j is found to be 60 μ eV. Observed EPR g = 2.0 and g = 4.3 are ascribed to octahedral symmetry with tetragonal distortion and tetrahedral [FeO_{4/2}]²⁻ symmetry with rhombic distortion, respectively of the Fe³⁺ ions.

REFERENCES

- 1. S. Atalay, H.I. Adiguel and F. Atalay, Mater Sci. Engg., A304, 796 (2001).
- 2. Y.Y. Kim, K.H. Kim and J.S. Choi, J. Phys. Chem. Solids, 50, 903 (1989).
- 3. A.J. Bosman and H.J. Van Daal, Adv. Phys., **19** 1 (1970).
- 4. R. Zallen, Physics of Amorphous Solids, John Wiley and Sons, New York (1983).
- 5. S. Bera and R.N.P. Choudary, Bull. Mater. Sci., 19, 1083 (1996).
- 6. J.O. Israd, J. Non-Cryst Solids, 42, 371 (1980).
- 7. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, New York, edn. 3, p. 118 (1986).
- 8. S. Hazra, S. Mandal and A. Ghosh, Phys. Rev., B56, 8021 (1997).
- 9. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, New York, edn. 3, p. 104 (1986).
- 10. C.P. Poole Jr., Electron Spin Resonance. Interscience, New York, p. 20 (1976).
- 11. J.L. Rao, A. Murali and E.D. Rao, J. Non-Cryst Solids, 202, 215 (1996).

(*Received*: 13 May 2008; *Accepted*: 29 April 2009) AJC-7450