Asian Journal of Chemistry

Effect of Zinc Applications on Quality Parameters of Wheat in Semi Arid Region

GÜLCAN KINACI* and ENGIN KINACI Department of Field Crops, Agricultural Faculty, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey Fax: (90)3242990; Tel: (90)3242991; E-mail: gkinaci@ogu.edu.tr

Effect of zinc application methods on 1000 kernel weight, protein content, sedimentation, gluten, gluten index and starch damaged of wheat was studied. Zinc applied to soil, to seed, to leaf, to soil+ leaf and to seed+leaf. Experimental design was factorial in randomized complete block with three replications. Investigated traits affected positively by all zinc treatments. Soil + leaf and soil application of zinc were most effective. Variation observed among wheat genotypes in response to zinc.

Key Words: Wheat, Zinc applications, Protein content, Sedimentation value, Gluten, Gluten index.

INTRODUCTION

Zinc is an essential element for plants, besides for normal development and function of humans and domesticated animals. Approximately 40 % of the world's population suffers from micronutrient deficiencies including zinc deficiency¹. High consumption of cereal-based food is suggested to be one major reason for zinc deficiency in humans especially in developing countries².

Turkey is one of the major wheat producing and consuming countries in the world. Soils of its largest wheat producing area (Central Anatolia) are highly calcareous and low in organic matters. These soil factors limits mobility and availability of soil-zinc or fertilizer-zinc to plant roots³. More than 90 % of soils sampled in Central Anatolia contained less than 0.5 mg kg⁻¹ DTPA-extractable zinc^{4,5}.

Zinc deficiency can be make up by applying zinc to soil or plant foliage as well as by treating seeds with zinc. Mengel⁶, Schulte and Walsh⁷, Fernster *et al.*⁸, Martens and Westermann⁹ suggested that foliar application of $ZnSO_4$ would improve crop yields. Seed treatment procedures have been tried in an attempt to correct zinc deficiencies. The effect of different zinc application methods on plant grown in zinc-deficient soils was mostly studied on corn, rice, bean, vegetables, fruit trees and wheat⁹⁻¹¹.

The object of this study were to asses the impact of zinc on quality traits and determine the quality differences in wheat genotypes under different zinc application methods.

5024 Kinaci et al.

Asian J. Chem.

EXPERIMENTAL

The grain samples used in this study were obtained from a field experiment conducted by Yilmaz *et al.*¹⁰, as factorial in randomized complete block design with three replications at the research farm of Bahri Dagdas International Winter Cereal Research Center at Konya, in Central Anatolian Region of Turkey to investigate efficient Zn application methods on wheats. Zinc was applied on three wheat cultivars, soft white Gerek 79, hard white Dagdas 94 and hard red Bezostaja 1 as (1) Control (C) (no zinc application), (2) sprayed to soil (3) sprayed on seed, (4) sprayed on to leaves (5), soil + leaf application (methods 2 and 4 combined) and (6) seed + leaf application (methods 3 and 4 combined).

The samples from each plots evaluated for 1000 kernel weight (TKW), protein content (PC), sedimentation value (SV), gluten (GL), gluten index (GI) and starch damaged (SD).

Thousand kernel weight determined by counting 100 grains three times and multiplying their average by 10. Samples were individually milled by laboratory mill and sieve for 1.5 min. Flour moisture was determined (130 °C for 1 h). Flour protein content was estimated by the NIR analysis using a Dickey-John GAC III previously calibrated against Kjeldahl protein (N \times 5.7) determination (AACC, 1983, Method 46-11)¹². Estimation of sedimantation values was done by AACC, 1983, Method 56-61A¹², gluten and gluten index by AACC Method 38-12¹² and starch damaged by AACC, 1983, Method 76-30 A¹². SV values evaluated as follows: less than 15 mL is weak, 16-24 mL is medium, 25-36 mL is strong and over 36 is very strong gluten¹³. 27 g and above accepted as high in gluten less than 20 g as low in gluten while 90 % accepted as high gluten index and less than 50 % as low gluten index¹⁴. Analysis of variance conducted for individual years and data combined over years for factorial design. Relationships between control and zinc application described by regression analysis.

RESULTS AND DISCUSSION

Analysis of variance (ANOVA) on quality data are presented in Table-1. Combined analysis over the years showed that years, varieties and treatments were significant (p < 0.01) for all parameters. Results of the across years analysis (Table-2) indicate that zinc application improved all of the measured parameters significantly. Similar results have been reported by Kelarestaghi *et al.*¹⁵ for protein percentage. The soil + leaf application of zinc was most effective among the treatments followed by soil application. Increase by soil + leaf treatment of two years average were 4.6 % in TKW, 6.5 % in PC, 33 % SV, 13.3 % in GL, 10.9 % GI, 7.9 % SD (Table-2).

Important differences in zinc efficiency among bread wheat cultivars reported by Shukla and Raj¹⁶, Graham *et al.*¹⁷, Rengel and Graham¹⁸, Çakmak *et al.*¹⁹. In this study, significant differences recorded among varieties for the studied parameters after Zn treatments. Variations among cultivars changed from 0.3 % to 48.4 % in

Vol. 21, No. 7 (2009)

TABLE-1
SOURCE OF VARIATION, MS AND F-TEST FOR DIFFERENT QUALITY
CHARACTERS OF WHEAT GENOTYPES IN COMBINED ANALYSIS
OVER THE YEARS (1994-1995 AND 1995-1996)

_	ANOVA							
		TKW	PC	SV	GL	GI	SD	
Replication (R)	2	0.10	0.02	0.04	0.07	0.35	0.010	
Years (Y)	1	126.60‡	12.34‡	592.68‡	133.34‡	555.79‡	21.870‡	
Varieties (V)	2	228.40‡	26.01‡	1707.82‡	988.24‡	18042.56‡	88.520‡	
Treatment (T)	5	11.60‡	1.05‡	84.48‡	56.95‡	62.57‡	1.720‡	
YXV	2	4.70‡	0.84‡	136.93‡	0.08	49.84‡	1.530‡	
YXT	5	0.80	0.01	0.56†	0.44	2.12‡	0.050‡	
VXT	10	1.30‡	0.04^{+}	0.52‡	0.40	0.43	0.020‡	
YXVXT	10	0.40	0.03	0.18	0.30	0.44	0.030‡	
Error (E)	70	0.40	0.02	0.18	0.22	0.42	0.002	

TKW = Thousand kernel weight, PC = Protein content, SV = Sedimentation value,

GL = Gluten, GI = gluten index, SD = Starch damaged.

TABLE-2
EFFECTS OF TREATMENT AND INCREASE IN QUALITY CHARACTERS IN
YEARLY AND POOLED ANALYSES (1995 AND 1996) ACROSS VARIETIES

	Voor	Treatments										
1 cai	1	2	IN	3	IN	4	IN	5	IN	6	IN	
	1995	37.9	38.9	2.6	38.3	2.6	38.0	0.3	39.5	4.2	38.7	2.1
TKW	1996	39.6	41.5	4.8	40.2	1.5	40.0	1.0	42.3	6.8	40.8	3.0
	Comb.	38.8	40.2	3.6	39.2	1.0	39.0	0.5	40.9	4.6	39.7	2.3
	1995	10.3	10.8	9.7	10.6	2.9	10.4	1.0	11.0	6.8	10.7	3.9
PC	1996	11.0	11.5	9.1	11.3	2.7	11.2	1.8	11.7	6.4	11.3	2.7
	Comb.	10.7	11.2	4.7	10.9	1.9	10.8	0.9	11.4	6.5	11.0	2.8
	1995	15.7	19.7	26.0	17.3	10.2	16.6	5.7	21.1	34.4	18.7	19.1
SV	1996	20.2	24.4	20.8	22.0	8.9	21.0	4.0	26.4	31.0	23.0	13.9
	Comb.	17.9	22.1	23.5	19.7	10.1	18.8	5.0	23.8	33.0	20.8	16.2
	1995	34.0	37.8	11.2	36.0	5.9	35.1	3.2	38.8	14.1	36.8	8.2
GL	1996	36.6	40.2	9.8	37.8	3.3	37.0	2.7	41.1	12.3	39.1	2.7
	Comb.	35.3	39.0	10.5	36.9	4.5	36.1	2.3	40.0	13.3	37.9	7.4
	1995	44.0	46.9	6.6	45.1	2.5	44.4	0.9	48.2	9.5	46.0	4.5
GI	1996	47.3	52.0	9.9	50.0	5.7	48.6	2.7	53.1	12.3	51.0	7.8
	Comb.	45.7	49.4	8.1	47.5	3.9	46.5	1.8	50.7	10.9	48.5	6.1
SD	1995	11.0	11.6	5.5	11.4	3.6	11.3	2.7	11.7	6.4	11.5	4.5
	1996	11.8	12.6	6.8	12.2	3.4	12.0	1.7	12.8	8.5	12.4	5.1
	Comb.	11.4	12.1	6.1	11.8	3.5	11.7	2.6	12.3	7.9	11.9	4.4

Comb. = Combined; IN = Increase (%).

general (Table-3). According to results of combined analysis, cultivar Bezostaja 1 exhibited maximum TKW (42.8 g), PC (12.4 %), SV (31.2 mL), G (45.9 %) and GI (76.2) values under soil + leaf application, while significant increase recorded for SV, GL, GI values in cultivar Gerek 79 with same treatment. Althought Bagci *et al.*⁵ reported some decrease SD with Zn application to soil, all Zn treatments used in this

5026 Kinaci et al.

Asian J. Chem.

	Voriety					Treat	nents				
	variety-	1	2	IN	3	4	IN	5	IN	6	IN
	GRK	36.3	37.0	1.9	36.6	36.4	0.3	37.6	3.6	36.7	1.1
TKW	DDS	40.5	41.9	3.5	41.2	40.8	0.7	42.3	4.4	41.7	3.0
	BEZ	39.6	41.8	5.3	39.9	39.7	0.3	42.8	8.1	40.8	3.0
	GRK	9.8	10.3	4.9	10.2	10.0	1.7	10.5	6.1	10.3	4.4
PC	DDS	10.7	11.1	3.3	10.9	10.8	0.8	11.2	5.1	11.0	2.3
	BEZ	11.5	12.1	5.1	11.8	11.6	0.9	12.4	7.8	11.9	3.5
	GRK	12.4	16.7	34.7	13.5	12.7	2.4	18.4	48.4	15.0	21.0
SV	DDS	16.0	20.0	25.0	18.0	17.0	6.0	22.0	37.0	19.0	19.0
	BEZ	25.5	29.5	15.7	27.5	26.7	4.7	31.2	22.4	28.5	11.8
	GRK	31.4	35.4	12.7	33.0	31.9	3.2	36.2	15.3	34.0	8.3
GL	DDS	33.5	36.7	8.7	34.9	34.3	2.4	37.9	13.1	35.7	6.6
	BEZ	41.0	45.0	9.8	42.9	42.0	2.4	45.9	12.0	44.2	7.8
	GRK	29.0	33.2	14.5	31.2	30.0	3.4	34.5	19.0	32.2	11.0
GI	DDS	37.0	40.2	8.6	38.2	37.7	1.9	41.4	11.9	39.2	5.9
	BEZ	71.0	75.0	5.6	73.2	71.9	1.3	76.2	7.3	74.2	4.5
	GRK	9.8	10.4	6.1	10.1	10.0	2.0	10.5	7.1	10.2	4.1
SD	DDS	12.8	13.5	5.5	13.2	13.1	2.3	13.7	7.0	13.4	4.7
	BEZ	11.6	12.4	6.9	12.1	11.9	2.6	12.6	8.6	12.2	5.2

TABLE-3 GENOTYPIC DIFFERENCES AND INCREASE IN QUALITY TRAITS IN COMBINED ANALYSES

Combined over 2 years.

study significantly enhanced SD values. Highest effects were obtained by soil and soil + leaf applications 'variety \times treatment' interaction supported that zinc effect on quality traits was varied in relation with genotypes.

Regression analysis showed that variations in quality parameters accounted to zinc application changed from 79 to 99 %. Variation in TKW due to zinc treatments was 79-94 % and highest increase produced by soil + leaf treatment as 125 %. The 91-98 % of variation in PC accounted for zinc treatments. Variation in SV due to zinc application was 97-99 %. According to the regression analysis, 97-100 % of variation in G, GI and SD can be explained by zinc treatment (Table-4).

Conclusion

Zinc deficiency is a particularly widespread in cereal-growing areas, leading to severe depression in production and nutritional quality of grains^{17,20}. Wheat geno-types investigated in this research effected by zinc application and values of quality traits increased in various levels. Hard red Bezostaja 1 and hard white Dagdas 94 gave better response to zinc application in compare with soft white Gerek 79. Variations among wheat genotypes to Zn application my use by breeders to improve germplasm and/or varieties with various quality levels requested by users. According to the result of this study soil + leaf application was the most effective method to obtain

Vol. 21, No. 7 (2009)

TABLE-4
RELATIONSHIPS BETWEEN CONTROL AND OTHER
TREATMENTS (2, 3, 4, 5, 6) IN ALL GENOTYPES

		Y = a + bx	R	r
	Control-Soil	40.2 + 1.22x	0.85	0.92
	Control-Seed	39.2 + 1.04x	0.94	0.97
Kernel weight	Control-Leaf	39.0 + 1.01x	0.92	0.96
Kerner wergin	Control-Soil + Leaf	40.9 + 1.25x	0.82	0.91
	Control-Seed + Leaf	39.7 + 1.10x	0.79	0.89
	Control-Soil	11.2 + 0.99x	0.93	0.97
	Control-Seed	11.0 + 0.91x	0.96	0.98
Protein content	Control-Leaf	10.8 + 0.94x	0.98	0.99
	Control-Soil + Leaf	11.4 + 1.11x	0.92	0.96
	Control-Seed + Leaf	11.0 + 0.91x	0.91	0.95
	Control- Soil	22.1 + 0.98x	0.99	0.99
C - 1 ¹ + - + ¹	Control-Seed	19.6 +1.03x	0.98	0.99
Sedimantation	Control-Leaf	18.8 + 1.02x	0.97	0.99
value	Control-Soil + Leaf	23.8 + 1.0x	0.97	0.99
	Control-Seed + Leaf	20.8 + 1.0x	0.98	0.99
	Control- Soil	39.0 + 1.02x	0.98	0.99
	Control-Seed	36.9 + 1.0 x	0.98	0.99
Gluten	Control-Leaf	36.1 + 1.01x	0.97	0.99
	Control-Soil + Leaf	40.0 + 1.0 x	0.98	0.99
	Control-Seed + Leaf	37.9 + 1.05x	0.97	0.99
	Control-Soil	49.4 + 1.0x	0.98	0.99
	Control-Seed	47.5 + 1.01x	0.99	0.99
Gluten index	Control-Leaf	46.5 +1.0x	0.99	0.99
	Control-Soil + Leaf	50.6 + 1.0 x	0.98	0.99
	Control-Seed + Leaf	48.5 + 1.01x	0.99	0.99
	Control-Soil	12.1 + 1.03x	0.99	0.99
	Control-Seed	11.8 + 1.06x	0.99	0.99
	Control-Leaf	11.7 + 1.03x	1.00	1.00
	Control-Soil + Leaf	12.3 + 1.09x	0.99	0.99
	Control-Seed + Leaf	12.0 + 1.10x	0.98	0.99

considerably high level of quality in bread wheats. Yilmaz *et al.*¹⁰ were found that irrespective of the method, zinc application significantly increased grain yields in all wheat cultivars with the consideration of these two results it can be conclude that zinc application in deficient soils is highly benefical to obtain high quality and high yield from winter wheats.

ACKNOWLEDGEMENTS

The authors wishes to thank Dr. Yilmaz and his coworkers for providing the grain samples used in this study.

5028 Kinaci et al.

Asian J. Chem.

REFERENCES

- 1. R.D. Graham and R.M. Welch, IFPRI Workshop on Food Policy and Agricultural Technology to Improve Diet Quality and Nutrition (1994).
- 2. I. Cakmak, M. Kalayci, H. Ekiz, H. J. Braun, Y. Kilinç and A. Yilmaz, *Field Crops Res.*, **60**, 175 (1999).
- 3. H. Marschner, in ed.: A.D. Robson, Zinc in Soils and Plants, Kluwer Academic Publisher, The Netherlands, pp. 59-77 (1993).
- 4. F. Eyüpoglu and T.C. Prime, Ministries Village Affairs Gn. Dr., Soil and Fertilizer Res. Inst. Publications. Gn.Pub.Nu. 220, Tech. Pub. Nu. T-67, Ankara, p. 122 (1999).
- 5. I. Cakmak, A. Yilmaz, M. Kalayci, H. Ekiz, B. Torun, B. Erenoglu and H.J. Braun, *Plant Soil*, **180**, 165 (1996).
- 6. D.B. Mengel, Indiana Coop. Ext. Serv. Ay-239 (1980).
- 7. E.E. Schulte and L.M. Walsh, Soil and Applied Zinc. Univ. Wisconsin Coop. Ext. Serv. A2528 (1982).
- 8. W.E. Fenster, G.W. Rehm and J. Grava, Minnesota Agric. Ext. Serv. Ag-Fs-0720 (1984).
- D.C. Martens and D.T. Westerman, in eds.: J.J. Morvedt, F.R. Cox, L.M. Shuman and R.M. Welch, Micronutrients in Agriculture, Soil Sci. Soc.Am. Books, Wisconsin, USA, edn. 2, pp. 549-592 (1991).
- A. Yilmaz, H. Ekiz, B. Torun, I. Gultekin, S. Karanlik, S.A. Bagci and I. Çakmak, *J. Plant Nutr.*, 20, 461 (1997).
- 11. I. Çakmak, M. Kalayci, H. Ekiz, H.J. Braun, Y. Kilinç and A. Yilmaz, *Field Crops Res.*, **60**, 175 (1999).
- 12. AACC (1983).
- 13. M. Uluöz, E.Ü. Ziraat Fak. Yy. Izmir, 29, 91s (1965).
- 14. H. Boyacioglu, Milling Training Program Notes, Istanbul, Turkey, p. 41 (1994).
- 15. K.B. Kelarestaghi, H. Madani, M. Bazoobandi and M. Asadi, Zinc Crops 2007, 24-26 May 2007, Istanbul, Turkey.
- 16. U.C. Shukla and H. Raj, Soil Sci. Soc. Am. Proc., 38, 477 (1974).
- 17. R.D. Graham, J.S. Ascher and S.C. Hynes, Plant Soil, 146, 241 (1992).
- 18. Z. Rengel and R.D. Graham, Plant Soil, 173, 267 (1995).
- I. Çakmak, N. Sari, H. Marschner, M. Kalayci, A. Yilmaz, S. Eker and K.Y. Gülüt, *Plant Soil*, 180, 173 (1996).
- 20. R.D. Graham and R. Welch, International Food Policy Research Institute, Washington DC (1996).

(Received: 25 January 2008; Accepted: 20 April 2009) AJC-7432