Asian Journal of Chemistry

Vol. 21, No. 6 (2009), 4547-4552

Analysis on the Seasonal Variations in Carrageenans of *Hypnea* flagelliformis and Sarconema filiforme by FTIR Spectroscopy

N. RAJASULOCHANA* and S. GUNASEKARAN[†] Department of Plant Biology & Plant Biotechnology Presidency College, Chennai-600 005, India E-mal: rajasoluchana_n@ymal.com

Carrageenans are the most common and abundant cell wall polysaccharides of red algaeand are commercially important sulphated galactans. In the present study, polysaccharides extracted from *Hypnea flagelliformis* and *Sarconema filiforme* of summer and winter collections, were examined by FTIR spectroscopic analysis. The spectra of *Hypnea flagelliformis* collected in both seasons are correspondingly similar to that of kappa carrageenan. FTIR spectra of *Sarconemea filiforme* showed a peak at 805 cm⁻¹ which confirms the presence of 3,6-anhydro galactose-2-sulphate. This is characteristic of iota carrageenan. The seasonal variations occur in the absorption bands of polysaccharides.

Key Words: Carrageenans, Hypnea flagelliformis, Sarconema filiforme.

INTRODUCTION

Carrageenans are commercially important hydrophilic colloids which occur as matrix material in numerous species of red algae. Chemically they are highly sulphated galactans. Due to their half-ester sulphate moieties they are strongly anionic polymers. The solubility properties of carrageenans have led to their widespread commercial use in food and other industries¹⁻³. Carrageenans are used as thickening, suspending and gelling agents. The commercially important carrageenans are kappa (k), iota (t) and lambda (λ). The type of carrageenan could be identified based on the intensity of absorption bands exhibited by the spectra. The consistent occurrence of kappa carrageenan in the red algal family Hypneaceae was also confirmed by IR spectral analysis^{4,5}. The polysaccharides of some members of Solieriaceae, Cystocloniaceae and Phyllophoraceae were characterized as iota carrageenan by spectroscopic method^{6,7}. The present study aims to bring out the types of carrageenan and seasonal variations in the spectra of *Hypnea flagelliformis* and *Sarconema filiforme* by FTIR spectroscopy.

[†]Department of Physics, Pachiyappa's College, Chennai-600 030, India.

4548 Rajasulochana et al.

Asian J. Chem.

EXPERIMENTAL

As the cell wall polysaccharides are soluble in water, the hot water extraction method was adopted. The extracted polysaccharides from summer and winter collections of *Hypnea flagelliformis* and *Sarconema filiforme* were dried in dessicator. The dried polysaccharide was powdered and passed through 1 mm IS sieve. The powdered polysaccharide was transferred to air tight glass bottle and stored for quality analysis. 1 mg of the dry sample powder was mixed in a mortar with 99 mg of KBr. A thin KBr disc was obtained by pressing the powder in French press and Fourier transform infrared (FT-IR) spectra were recorded using Bruker Vector 20 FT-IR double beam spectrophotometer in the range of 4000-600 cm⁻¹. Spectra were taken under identical conditions and compared with spectra of authentic kappa and iota carrageenan.

RESULTS AND DISCUSSION

Seasonal variation exhibited in the carrageenans and their band assignments are presented in the Tables 1 and 2.

Vibrational band assignments

O-H stretching vibrations: The O-H stretching occurs in the present study at around 3400 cm⁻¹ in general with very strong intensity of bands. This O-H stretching is unique and common, occurs in samples taken for the investigation as reported in earlier work⁸.

Methyl group vibrations: The FTIR spectra of samples, exhibited weak bands for methyl group *i.e.* symmetric stretch band at 2860 cm⁻¹ and asymmetric C-H stretch band⁹ at 2925 cm⁻¹. In the present work, the bands of strong to weak intensity observed at around 1450 and 1370 cm⁻¹ are attributed to asymmetrical and symmetrical bending vibrations of CH₃/CH₂ group, respectively supported by previous report¹⁰.

Ester-sulphate link vibrations: The ester-sulphate link vibration is exhibited by the peaks¹¹ at 1370, 1250, 1180 and 1060 cm⁻¹. In this investigation, the intensity of the absorption in these regions varies from strong to weak. The variation in the intensity of absorption bands depends upon the species and the seasons. The carrageenans have wide and strong absorption bands in 1100-1000 cm⁻¹ region, which are typical of polysaccharides¹². In the present study, the maximum absorption is given by 1080-1020 cm⁻¹ for both carrageenan types except in summer spectra of *Sarconema filiforme*, in which there is a weak absorption in the same bands. The sulphate stretching occurs at 850 cm⁻¹ mainly due to C-O-S in C-4 link vibration¹³. The strong and weak intensity of bands were observed in the FTIR spectra of samples studied.

Carbon-sulphur link vibrations: The literature study reveals that the carbon sulphur link vibration of polysaccharides occurs¹² at 770 cm⁻¹. The spectra of present study showed strong to weak band over the range 780-703 cm⁻¹ attributed to the deformation of sulphate. The peaks at 670 cm⁻¹ represent C-S deformation in the spectra of all the species.

Vol. 21, No. 6 (2009)

TABLE	E-1
-------	-----

FTIR BAND (cm⁻¹) ASSIGNMENTS OF STANDARD KAPPA CARRAGEENAN AND CARRAGEENAN OF *Hypnea flagelliformis*

Kappa	Hypnea flagelliformis		Band assignments		
carrageenan (FMC)	Summer	Winter	-		
674 ms	666 m	668 m	C-S link vibration/S-O stretch/C-S deformation		
703 s	704 s	703 mw	C-S link vibration/S-O stretch /C-S deformation		
763 mw	773 mw	777 w	C-S link vibration/S-O stretch /C-S deformation		
847 ms	845 s	847 w	Ester-sulphate in C-6 link vibration/C-C/C-O/C-O-S stretch		
929 s	931 s	921 m	3,6 anhydro galactose vibration/C-C/C-O stretch		
1042 vs	1040 vs	1030 s	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
1069 vs	1074 vs	1060 ms	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
1160 vs	1162 vs	1160 s	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
1264 vs	1266 vs	1262 s	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
1383 ms	1383 s	1384 ms	Methyl group vibration/S=O symmetric stretch		
1442 m	1450 s	1441 m	Methyl group vibration/S=O asymmetric stretch		
1549 w	1550 mw	1541 mw	C=O symmetric stretchN-H deformation		
1641 s	1643 s	1637 vs	C=O asymmetric stretch/N-H deformation		
1724 w	1750 vw	1760 vw	C=O stretch		
2828 vw	2866 w	2867 vw	Methyl group vibration/C-H symmetric stretch		
2917 vw	2923 mw	2925 vw	Methyl group vibration/C-H asymmetric stretch		
3416 vs	3434 s	3446 vs	OH/NH stretch		

TABLE-2

FTIR BAND (cm⁻¹) ASSIGNMENTS OF STANDARD IOTA CARRAGEENAN AND CARRAGEENAN OF Sarconema filiforme

Band assignments(FMC)SummerWinterBand assignments678 m666 ms669 mC-S link vibration/S-O stretch/C-S deformation776 m778 ms774 wC-S link vibration/S-O stretch/C-S deformation806 mw805 w805 vwEster-sulphate link vibration/C-C/C-O/C-O-S stretch853 m849 m847 vwEster-sulphate link vibration/C-C/C-O/C-O-S stretch919 ms929 vw932 w3,6 anhydro galactose vibration/C-C/C-O/C-O-S stretch1019 vs1018 w1029 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1058 vs-1071 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1146 s1114 vw1159 mvEster-sulphate link vibration/C-C/C-O/C-O-S stretch1255 s1227 w1270 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1383 ms1385 w1385 mwMethyl group vibration/S=O symmetric stretch1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch2862 ww2862 ww2862 ww2862 ww	Iota	Sarconema juljorme		D and assignments		
776 m778 ms774 wC-S link vibration/S-O stretch /C-S deformation806 mw805 w805 vwEster-sulphate link vibration/C-C/C-O/C-O-S stretch853 m849 m847 vwEster-sulphate link vibration/C-C/C-O/C-O-S stretch919 ms929 vw932 w3,6 anhydro galactose vibration/C-C/C-O/C-O-S stretch1019 vs1018 w1029 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1058 vs-1071 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1146 s1114 vw1159 mvEster-sulphate link vibration/C-C/C-O/C-O-S stretch1255 s1227 w1270 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1383 ms1385 w1385 mwMethyl group vibration/S=O symmetric stretch1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1541 rwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	Ũ		Winter	- Dand assignments		
806 mw $805 w$ $805 vw$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $853 m$ $849 m$ $847 vw$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $919 ms$ $929 vw$ $932 w$ $3,6 anhydro galactose vibration/C-C/C-O/C-O-S stretch$ $1019 vs$ $1018 w$ $1029 m$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $1058 vs$ - $1071 m$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $1146 s$ $1114 vw$ $1159 mv$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $1255 s$ $1227 w$ $1270 m$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $1383 ms$ $1385 w$ $1385 mw$ Methyl group vibration/S=O symmetric stretch $1460 m$ $1469 m$ $1457 mw$ Methyl group vibration/S=O asymmetric stretch $1547 w$ $1547 vw$ $1541 mw$ C=O symmetric stretch/N-H deformation $1640 s$ $1642 ms$ $1637 vs$ C=O asymmetric stretch/N-H deformation $1721 w$ - $1760 vw$ C=O stretch	678 m	666 ms	669 m	C-S link vibration/S-O stretch/C-S deformation		
853 m849 m847 vwEster-sulphate in C-6 link vibration/C-C/C-O/C-O-S stretch919 ms929 vw932 w3,6 anhydro galactose vibration/C-C/C-O stretch1019 vs1018 w1029 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1058 vs-1071 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1146 s1114 vw1159 mvEster-sulphate link vibration/C-C/C-O/C-O-S stretch1255 s1227 w1270 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1383 ms1385 w1385 mwMethyl group vibration/S=O symmetric stretch1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	776 m	778 ms	774 w	C-S link vibration/S-O stretch /C-S deformation		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	806 mw	805 w	805 vw	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
919 ms929 vw932 w3,6 anhydro galactose vibration/C-C/C-O stretch1019 vs1018 w1029 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1058 vs-1071 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1146 s1114 vw1159 mvEster-sulphate link vibration/C-C/C-O/C-O-S stretch1255 s1227 w1270 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1383 ms1385 w1385 mwMethyl group vibration/S=O symmetric stretch1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1547 vw1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	853 m	849 m	847 vw	*		
1019 vs1018 w1029 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1058 vs-1071 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1146 s1114 vw1159 mvEster-sulphate link vibration/C-C/C-O/C-O-S stretch1255 s1227 w1270 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1383 ms1385 w1385 mwMethyl group vibration/S=O symmetric stretch1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1547 vw1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch				stretch		
1058 vs- $1071 m$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $1146 s$ $1114 vw$ $1159 mv$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $1255 s$ $1227 w$ $1270 m$ Ester-sulphate link vibration/C-C/C-O/C-O-S stretch $1383 ms$ $1385 w$ $1385 mw$ Methyl group vibration/S=O symmetric stretch $1460 m$ $1469 m$ $1457 mw$ Methyl group vibration/S=O asymmetric stretch $1547 w$ $1547 vw$ $1541 mw$ C=O symmetric stretch/N-H deformation $1640 s$ $1642 ms$ $1637 vs$ C=O asymmetric stretch/N-H deformation $1721 w$ - $1760 vw$ C=O stretch	919 ms	929 vw	932 w	3,6 anhydro galactose vibration/C-C/C-O stretch		
1146 s1114 vw1159 mvEster-sulphate link vibration/C-C/C-O/C-O-S stretch1255 s1227 w1270 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1383 ms1385 w1385 mwMethyl group vibration/S=O symmetric stretch1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1547 vw1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	1019 vs	1018 w	1029 m	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
1255 s1227 w1270 mEster-sulphate link vibration/C-C/C-O/C-O-S stretch1383 ms1385 w1385 mwMethyl group vibration/S=O symmetric stretch1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1547 vw1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	1058 vs	-	1071 m	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
1383 ms1385 w1385 mwMethyl group vibration/S=O symmetric stretch1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1547 vw1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	1146 s	1114 vw	1159 mv	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
1460 m1469 m1457 mwMethyl group vibration/S=O asymmetric stretch1547 w1547 vw1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	1255 s	1227 w	1270 m	Ester-sulphate link vibration/C-C/C-O/C-O-S stretch		
1547 w1547 vw1541 mwC=O symmetric stretch/N-H deformation1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	1383 ms	1385 w	1385 mw	Methyl group vibration/S=O symmetric stretch		
1640 s1642 ms1637 vsC=O asymmetric stretch/N-H deformation1721 w-1760 vwC=O stretch	1460 m	1469 m	1457 mw	Methyl group vibration/S=O asymmetric stretch		
1721 w – 1760 vw C=O stretch	1547 w	1547 vw	1541 mw	C=O symmetric stretch/N-H deformation		
	1640 s	1642 ms	1637 vs	C=O asymmetric stretch/N-H deformation		
2020 min 2062 min 2062 min Mathed anoun wheation (C. H. anness this starts)	1721 w	_	1760 vw	C=O stretch		
2858 vw 2805 vw 2805 vw Metnyl group vibration/C-H symmetric stretch	2838 vw	2863 vw	2863 vw	Methyl group vibration/C-H symmetric stretch		
2925 w 2924 vw 2924 vw Methyl group vibration/C-H asymmetric stretch	2925 w	2924 vw	2924 vw	Methyl group vibration/C-H asymmetric stretch		
3400 vs – 3419 vs OH/NH stretch	3400 vs	-	3419 vs	OH/NH stretch		
– 3464 vs 3475 vs		3464 vs	3475 vs			

3,6-Anhydro-galactose bridge vibrations: The peak at 805 cm⁻¹ was attributed to -O-SO₃ vibration on C-2 of a 3,6-anhydrogalactose ring¹⁴. This weak band at 805 cm⁻¹ was observed in the study only in *Sarconema filiforme*, which was characteristic of iota carrageenan. The strong to weak absorption bands occur at 930 and 1070 cm⁻¹ in all the spectra of the present study attributed to C-O ether bond of 3,6-anhydro-galactose vibration¹⁴. These two peaks are typical for phycocolloids.

Carbonyl vibrations: In the present work, very weak band was obtained at around 1740 cm⁻¹ in both the species studied. The strong absorption bands at 1640 cm⁻¹ was assigned to carbonyl vibration of carboxylic group (COO) due to asymmetric stretching (C=O). The medium to very weak intensity of band at around 1550 cm⁻¹ was assigned to symmetrical stretching of C=O. These assignments are in agreement with previous observations¹⁵.

 NH_2 group vibrations: The presence of protein in polysaccharides shows carbonyl absorption as amide group. Primary and secondary amides display a band in the region 1650 and 1540 cm⁻¹ due to amine deformation vibrations and CO-NH peptide link vibrations, respectively¹⁶. The spectra of the present investigation show strong to medium band at 1640 cm⁻¹ and medium to weak band at 1540 cm⁻¹ thus confirming the previous observations. A sharp peak centered at around 3500 cm⁻¹ may be due to NH stretching vibration¹⁷. These bands are observed in the characteristic region in the spectra of present study.

C-C stretching vibrations: The band observed in the region 1200-800 cm⁻¹ may be due to overlapping of C-C stretching and C-H bending modes¹⁸.

Qualitative analysis: The FTIR spectra of members of carrageenophytes exhibited more or less some common peaks at 3500, 3400, 2920, 2860, 1740, 1640, 1540, 1460, 1380, 1260, 1150, 1070, 1030, 930, 850-840, 770 and 670 cm⁻¹ (Table-1). The bands for carrageenophytes are found in the region 850-840 cm⁻¹ as expected. Some additional peak may be attributed, which serve as a criteria to differentiate the type of carrageenans.

Kappa carrageenan: The commercial kappa carrageenan (Gelcarin GP 812) obtained from FMC Bioploymer, USA was analyzed using FTIR spectral measurements. The spectrum exhibits peaks at 3416, 2917, 2828, 1724, 1641, 1549, 1442, 1383, 1264, 1160, 1069, 1042, 929, 847, 763, 703 and 674 cm⁻¹ (Table-1). The spectrum of *Hypnea flagelliformis*, collected in both seasons are correspondingly similar to that of the commercial sample of kappa carrageenan showing sharp peak at 930 cm⁻¹ for 3,6-anhydrogalactose and at 845 cm⁻¹ for 1,3 linked galactose 4- sulphate. The broad band at 1240 cm⁻¹ is common to all sulphated polysaccharides. This indicates an index of the degree of sulphation, its intensity increasing with sulphate content. The intensity of absorption was more in summer than in winter which indicates the effect of seasonal variation in the synthesis of carrageenan.

Iota carrageenan: The FTIR spectrum of iota carrageenan (Viscarin SD 389) obtained from FMC Biopolymer USA showed peaks at 3400, 2925, 2838, 1721, 1640, 1547, 1460, 1383, 1255, 1146, 1058, 1019, 919, 853, 806, 776 and 678 cm⁻¹

Vol. 21, No. 6 (2009) Analysis of Hypnea flagelliformis & Sarconema filiforme by FTIR 4551

(Table-2). The FTIR spectra of *Sarconema filiforme* showed more or less same peaks. However a broad band occurs at 1227, 1114 and 1018 cm⁻¹ and absence of peak at around 1720 cm⁻¹ was observed in summer. Comparatively less intensity of peaks is exhibited by the spectrum of summer collection than in winter. This reflects the seasonal variation in the molecular level of carrageenan. The spectrum of winter collection shows resolved peaks at 3475 and 3419 cm⁻¹. Apart from these peaks, a peak was found at 805 cm⁻¹ more or less with the same level of absorption both in summer and in winter, indicating the presence of 1,4 linked 3,6-anhydrogalactose 2-sulphate. This is characteristic of iota carrageenan. It is quiet evident that the absorption bands of polysaccharides from *S. filiforme* are typical of iota carrageenan.

Quantitative analysis: A comparative study was made for all the samples to determine the variation in the absorbancy of major functional groups like hydroxyl group, total sulphate and CH_2OH , CH and amide groups. In each case normalized absorbancy show considerable variation between species and seasons. The results are given in Table-3.

	TABLE-3
ABSORBANCE VALUES OF DIF	FERENT GROUPS IN CARRAGEENANS
**	

Group	Kappa carrageenan – (FMC)	Hypnea flagelliformis		Iota	Sarconema filiforme	
		Summer	Winter	(FMC)	Summer	Winter
OH	0.260	0.120	0.190	0.25	0.350	0.130
Total sulphate	0.210	0.140	0.170	0.22	0.170	0.160
Ester	0.110	0.040	0.080	0.09	0.110	0.130
CH ₂ OH	0.310	0.190	0.210	0.31	0.320	0.250
CH	0.020	0.011	0.007	0.19	0.007	0.005
Amide	0.105	0.030	0.060	0.07	0.080	0.060

Conclusion

Kappa, iota and lambda carrageenans are having their, own peculiar properties. Mostly in food industries, lambda carrageenan is preferred because of its nongelling and high viscosity properties. The kappa and iota carrageenans are widely used in the industries where they are required as gelling agent. In cosmetics they are applied as stabilizer, as suspending agent for cocoa in chocolate milk and a gelling agent for milk puddings, water-gel desserts and air fresh gels and binding agents in tooth paste, skin ointments, cough syrup, *etc*. But there is no carrageenan manufacturing unit in our country. Carrageenan production must be commenced in India, using algal resources available in our country.

REFERENCES

- 1. M. Glicksman, Food Hydrocolloids, CRC Press, Boca Raton, FL (1987).
- 2. N.F. Stanley, Food Gels, Elsevier Applied Sceience, Amsterdam, The Netherlands (1990).
- 3. H.H. Selby and R.L. Whistler, Industrial Gums, Polysaccharides and Their Derivatives, Academic Press Inc., San Diego (1993).

4552 Rajasulochana et al.

Asian J. Chem.

- 4. K.E. Apt, Bot. Mar., 27, 489 (1984).
- 5. M.R. Saito and C.E. de Oliveira, *Hydrobiologia*, **204-205**, 585 (1990).
- 6. T. Chopin, M.D. Hanisk, F.E. Koehn, J. Mollion and S. Moreau, J. Appl. Phycol., 2, 3 (1990).
- 7. F.R. Correa-Diaz, F.R. Aguilar-Rosas and L.E. Aguilar-Rosas, *Hydrobiologia*, **204-205**, 609 (1990).
- 8. A.A. Szymanski, Correlaton of Infrared and Raman Spectra of Organic Compounds, Hertillon Press (1969).
- 9. S. Gunasekaran, S.R. Varadhan and N. Karunanidhi, *Proc. Indian Natl. Sci. Acad.*, **62**, 309 (1996).
- 10. D.C. Sigee, A. Dean, E. Levado and M.J. Tobin, Eur. J. Phycol., 37, 19 (2002).
- 11. A.D. Cross, An Introduction to Practical Infrared Spectroscopy, London, Butterworths (1964).
- 12. T. Alkahane and S. Izumi, Agric. Bio. Chem., 40, 285 (1976).
- R. Armisen and F. Galatas, Production and Utilization of Products from Commercial Seaweeds, AO Technical Paper, Vol. 288, p. 1 (1987).
- 14. D.J. Stancioff and N.F. Stanley, Proc. Int. Seaweed Symp., 6, 595 (1969).
- R.M. Silverstein, C. Basslor and T.C. Morril, Spectrometric Identification of Organic Compounds, John Wiley, New York (1981).
- 16. D. Christiaen and M. Bodard, Bot. Mar., 26, 425 (1983).
- 17. D. Naumann, C.P. Schultz and D. Helm, Infrared Spectroscopy of Biomolecules, Wiley, Chichester (1996).
- 18. U. Desai and S. Gunasekaran, Proc. Indian Natl. Sci. Acad., 59, 301 (1993).

(*Received*: 10 July 2008; *Accepted*: 18 March 2009) AJC-7362

2ND INTERNATIONAL SYMPOSIUM ON ANTIMICROBIAL PEPTIDES: FOOD, VETERINARY, MEDICAL AND NOVEL APPLICATIONS

17 – 19 JUNE 2009

PALAIS DU GRAND LARGE CONGRESS CENTER, SAINT-MALO, FRANCE

Contact: Djamel Drider E-mail: registration.amp2009@enitiaa-nantes.fr