Asian Journal of Chemistry

Vol. 21, No. 6 (2009), 4205-4208

Synthesis and Characterization of Four New Trialkylammonium Sulfatotrioxochromates, [R₃NH]₂CrO₃SO₄, (R = Me, Et, *n*-Pr, *n*-Bu)

Maryam Hajighahramani[†], Rashid Zamanpoor[†], Shahriare Ghammamy^{*},

KHEYROLLAH MEHRANI[†], TAHMINEH BANIBAIRAMI[†], RAHMATTOLLAH RAHIMI[‡] and SINA ASILI§ Department of Chemistry, Faculty of Science,

Imam Khomeini International University, Ghazvin, Iran E-mail: shghamami@ikiu.ac.ir; shghamamy@yahoo.com

The new mild chromium(VI) oxidizing agents *i.e.*, trialkylammonium sulfatotrioxochromates (TriRASC), were prepared and characterized. These reagents are suitable for oxidizing various primary and secondary alcohols to their corresponding carbonyl compounds and anthracene to anthraquinone. Orange solids (TriRASC), is easily synthesized by the reaction of chromium(VI) oxide:trialkylamine: in 1:2 molar ratios and sufficient sulfuric acid. These reagents are versatile reagents for the effective and selective oxidation of organic substrates, in particular for alcohols, under mild conditions.

Key Words: Chromium(VI), Oxidation, Organic substrate, Alcohols, Trialkylammonium sulfatotrioxochromates.

INTRODUCTION

The search for new oxidizing agents is of interest to synthetic organic chemists. Many such reagents have been developed in recent years with some success, significant improvements were achieved by the use of new oxidizing agents¹⁻³, such as 3-carboxy-pyridinium chlorochromate⁴, pyridinium fluorochromate⁵, quinolinium dichromate⁶, caffeinilium chlorochromate⁷, quinolinium chlorochromate⁸, isoquinolinium chlorochromate⁹ and tetramethylammonium fluorochromate¹⁰. These oxidants are mostly used for oxidation of alcohols to their corresponding aldehydes and ketones¹¹⁻²⁷. In this report, we introduce trialkylammonium sulfatotrioxo-chromates (TriRASC), that have certain advantages over similar oxidizing agents in terms of the amount of oxidant and solvent required, short reaction times and high yields.

EXPERIMENTAL

Melting points were obtained on an Electrothermal 9100 apparatus. Infrared spectra were recorded as KBr disks on a Shimadzu model 420 spectrophotometer. ¹H and ¹³C NMR spectra were recorded using Bruker DRX-500 in CDCl₃ solutions.

[†]Department of Chemistry, Faculty of Science, Islamic Azad University, Ardabil Branch, Ardabil, Iran.

[‡]Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran.

[§]Babasafari Student Research Center, Ardabil Branch, Ardabil, Iran.

4206 Hajighahramani et al.

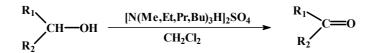
Asian J. Chem.

The UV/Visible measurements were made on an Uvicon model 922 spectrometer. All separations and quantization of alcohols and aldehydes were performed using a Philips 4410 gas chromatograph. All reagents and solvents are of reagent grades.

Preparation: CrO_3 was dissolved in water in a beaker and sulfuric acid was added with stirring at 0 °C, then a stoichiometric amount of trialkylamine was added dropwise with stirring to this solution over a period of 7 h at 0 °C. The solid was isolated by filtration then was washed with hexane and dried under vacuum for 1 h.

Trimethylammonium sulfatotrioxochromate (TriMASC) [N(CH₃)₃H]₂CrO₃SO₄: C₆H₂₀N₂O₇SCr: Calcd. (%) C, 22.78; H, 6.329; N, 8.86. Found (%) C, 23.82; H, 6.51; N, 9.19. IR. (KBr, cm⁻¹): 902 v₁(A₁) or v(CrO₃), 945 v₄(E) or v(CrO₃), 1133 v₂(A₁) or v(S-O). UV/Visible ¹³C NMR and ¹H NMR were all consistent with the TriMASC structure. Electronic at 450 nm⁻¹, corresponding to 1a₂→9e (ε = 228 M⁻¹ cm⁻¹); 362 nm to 8e→9e (ε = 733 M⁻¹ cm⁻¹) and 282 nm⁻¹ to 12a₁→9e (ε = 1238 M⁻¹ cm⁻¹).

Triethylammonium sulfatotrioxochromate (TriEASC) [N(C₂H₅)₃H]₂CrO₃SO₄: C₁₂H₃₂N₂O₇SCr: Calcd. (%) C, 36.00; H, 8.00; N, 7.00. Found (%) C, 36.82; H, 8.17, N, 7.28. IR. (KBr, cm⁻¹): 898 v₁(A₁) or v(CrO₃), 950 v₄(E) or v(CrO₃) 1173 v₂(A₁) or v(S-O). UV/Visible was all consistent with the TriEASC structure. Electronic absorption at 452 nm, corresponding to $1a_2 \rightarrow 9e$ ($\epsilon = 161 \text{ M}^{-1} \text{ cm}^{-1}$); 364 nm to $8e \rightarrow 9e$ ($\epsilon = 737 \text{ M}^{-1} \text{ cm}^{-1}$) and 261 nm to $12a_1 \rightarrow 9e$ ($\epsilon = 1683 \text{ M}^{-1} \text{ cm}^{-1}$).


Tripropylammonium sulfatotrioxochromate (TriPASC) [N(C₃H₇)₃H]₂CrO₃SO₄: C₁₈H₄₄N₂O₇SCr: Calcd. (%) C, 44.62; H, 9.09; N, 5.78. Found (%) C, 45.73; H, 9.31; N, 5.98. IR. (KBr, cm⁻¹): 902 v₁(A1) or v(CrO₃), 948 v₄(E) or v(CrO₃) 1097 v₂(A₁) or v(S-O). UV/Visible was all consistent with the TriPASC structure. Electronic absorption at 442 nm, corresponding to $1a_2 \rightarrow 9e$ ($\varepsilon = 254$ M⁻¹ cm⁻¹); 362 nm to $8e \rightarrow 9e$ ($\varepsilon = 878$ M⁻¹ cm⁻¹) and 276 nm to $12a_1 \rightarrow 9e$ ($\varepsilon = 1343$ M⁻¹ cm⁻¹).

Tributylammonium sulfatotrioxochromate (TriBASC) [N(C₄H₉)₃H]₂CrO₃SO₄: C₂₄H₅₆N₂O₇SCr: Calcd. (%) C, 50.70; H, 9.859; N,4.929. Found (%) C, 52.13; H, 10.21; N, 5.12. IR. (KBr, cm⁻¹): 896 v₁(A1) or v(CrO₃), 973 v₄(E) or v(CrO₃) 1147 v₂(A₁) or v(S-O). UV/Visible was all consistent with the TriBASC structure. Electronic absorption at 442 nm, corresponding to $1a_2 \rightarrow 9e$ ($\varepsilon = 232$ M⁻¹ cm⁻¹); 362 nm to $8e \rightarrow 9e$ ($\varepsilon = 793$ M⁻¹ cm⁻¹) and 282 nm to $12a_1 \rightarrow 9e$ ($\varepsilon = 1247$ M⁻¹ cm⁻¹).

Oxidation of alcohols: To a stirred solution of each alcohol in CH_2Cl_2 , trialkylammonium sulfatotrioxochromate are added in one portion, at room temperature. The progresses of the reactions are monitored by TLC and UV/Visible spectrophotometry (at 354 nm). The mixture were stirred and refluxed for the time indicated in the Table-1 at room temperature, diluted with CH_2Cl_2 and filtered. Evaporation of solvent furnished the product. The molar ratios of substrate to oxidants were 2:1. The solution became homogeneous briefly before the black-brown reduced reagent precipitated. Products are characterized by comparison with authentic samples (NMR, IR, TLC and m.p./b.p. measurement).

Vol. 21, No. 6 (2009)

Synthesis of New Trialkylammonium Sulfatotrioxochromates 4207

TABLE-1							
OXIDATION OF ALCOHOLS WITH TriRASC							
	Substrate Product		Time	Yield (%)			
	Substrate	FIOUUCI	(min)	TriMASC	TriEASC	TriPASC	TriBASC
1	<i>n</i> -C ₃ H ₇ -OH	<i>n</i> -C ₂ H ₅ -CHO	60	26	48	40	49
2	$2-C_3H_7-OH$	$2-C_2H_5-CHO$	60	22	23	30	30
3	$n-C_4H_9-OH$	<i>n</i> -C ₃ H ₇ -CHO	60	5	14	27	20
4	$2-C_4H_9-OH$	2-C ₃ H ₇ -CHO	60	31	12	34	3
5	$n-C_5H_{11}-OH$	<i>n</i> -C ₄ H ₉ -CHO	60	14	25	10	27
6	<i>n</i> -C ₈ H ₁₇ -OH	$n-C_7H_{15}$ -CHO	60	33	28	43	38
7	ОН	 0	60	29	25	41	38
8	СН2ОН	✓ → ↓	60	51	79	68	66

RESULTS AND DISCUSSION

Trialkylammonium sulfatotrioxochromates could be easily prepared in good yield, quite stable when stored dry and in the absence of light and are active as oxidizing agents for the conversion of alcohols to carbonyl compounds.

 $[N(R)_3H]_2CrO_3SO_4$ were prepared by the reaction of relative triamine with CrO_3 in 2:1 ratio and sufficient sulfuric acid in the water solvent.

There have been found that these reagents have certain advantages over similar oxidizing agents in terms of the amounts of oxidants and solvent required and especially in the short reaction times required and in the higher yields of the product (Table-1). The nature of the solvent does not appear to be particularly critical. Hydrocarbons, benzene, ethers and chlorinated hydrocarbons are equally effective, the practical choice being oriented by the solubility of the products and the desired reaction temperature. The IR spectra of TriRASC are similar to that of other sulfoxochromates²⁸.

In conclusion, the quick preparation of these reagents, their stability, nonhygroscopicity, the ease of the work up of the reaction mixtures, reasonable yields of products and reaction time make trialkylammonium sulfatotrioxochromates versatile and practical reagents for the oxidation of alcohols and useful additions to the presently available bench reagents in organic synthesis. TriRASC reagents are easy to handle, could be weighed and have no hazardous effects. 4208 Hajighahramani et al.

During the reactions, the colour of the oxidant change from orange to colourful, providing visual means for ascertaining the progress of the oxidations. The results obtained with trialkylammonium sulfatotrioxochromates are quite satisfactory and show the new reagents as valuable addition to the existing oxidizing agents.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Gh. Rezaei Behbahani and Dr. Mahjoub for valuable discussions.

REFERENCES

- 1. G. Maier, H.P. Reisenauer and M.D. Marco, Angew. Chem. Int. Ed., 38, 108 (1999).
- 2. A. Bhandari, P.K. Sharma and K.K. Banerji, Indian J. Chem., 40A, 470 (2001).
- 3. S.Meenahshisundaram and R. Soctaungam, Collect. Czech. Chem. Commun., 66, 877 (2001).
- 4. M.M. Heravi, R. Kiakoojori, M. Mirza-Aghayan, K. Tabar-Hydar and M. Bolourtchian, *Monatsh. Chem.*, **130**, 481 (1999).
- 5. M.N. Bhattacharjee, M.K. Chaudhuri, H.S. Dasgupta and N. Roy, Synthesis, 588 (1982).
- 6. G.S. Chaubey, S. Das and M.K. Mahanti, *Croat. Chim. Acta*, **76**, 287 (2003).
- 7. F. Shirini, I. Mohammadpoor-Baltork, Z. Hejazi and P. Heravi, *Bull. Korean Chem. Soc.*, **24**, 517 (2003).
- 8. G.F. Jeyanthi, G. Vijayakumar and K.P. Elango, J. Serb. Chem. Soc., 67, 803 (2002).
- 9. R. Srinivasan, P. Stanley and K. Balasubramanian, Synth. Commun., 27, 2057 (1997).
- 10. A.R. Mahjoub, S. Ghammami and M.Z. Kassaee, Tetrahedron Lett., 44, 4555 (2003).
- 11. J.C. Collins, W.W. Hess and F.J. Frank, Tetrahedron Lett., 9, 3363 (1968).
- 12. E.J. Corey and G.W.J. Fleet, Tetrahedron Lett., 14, 4499 (1973).
- 13. E.J. Corey and J.W. Suggs, Tetrahedron Lett., 16, 2647 (1975).
- 14. E.J. Corey and G. Schmidt, Tetrahedron Lett., 20, 399 (1979).
- 15. F.S. Guziec and F.A. Luzzio, Synthesis, 691 (1980).
- M.N. Bahttacharjee, M.K. Chauduri, H.S. Dasgupta, N. Roy, K. Nrmalendu and T. Darlando, Synthesis, 7 (1982).
- 17. M.N. Bahttacharjee, M.K. Chauduri and S. Purkayastha, Tetrahedron, 43, 5389 (1987).
- 18. M.N. Bhattacharjee and M.K. Chaudhuri, Inorg. Synth., 27, 310 (1990).
- 19. J. Drabowicz, Synthesis, 125 (1980).
- 20. V. Murugesan and A. Pandurangan, Indian J. Chem., 31B, 377 (1992).
- R. Srinivasan, C.V. Ramesh, W. Madhulatha and K. Balasubramanian, *Indian J. Chem.*, 35B, 480 (1996).
- U. Bora, M.K. Chaudhuri, D. Dey, D. Kalita, W. Kharmawphlang and G.C. Mandal, *Tetrahedron*, 57, 2445 (2001).
- Y. Martinez, M.A. delas Heras, J.J. Vaquero, J.L. Garcianavio and J. Alvarezbuilla, *Tetrahedron Lett.*, **31**, 8513 (1995).
- 24. S. Ghammamy, H. Eimanieh and M.K. Mohammadi, Synth. Commun., 37, 601 (2007).
- 25. M.Z. Kassaee, M. Hattami, A.R. Mahjoub and S. Ghammami, The Third Congress of Chemistry of Islamic Azad University, A-10 (2002).
- 26. S. Agarwal, H.P. Tiwari and J.P. Sharma, Tetrahedron, 46, 4417 (1990).
- 27. Y.S. Cheng, W.L. Liu and S.H. Chen, Synthesis, 223 (1980).
- K. Nakamoto, in: Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons: New York, edn. 3, Vol. 1, pp. 140-150 (1978).

(Received: 21 February 2008; Accepted: 2 March 2009) AJC-7313