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INTRODUCTION

In current years, there has been significant attention to
smart, super absorbent and swellable hydrogels. These hydrogels
are 3D polymer networks by physical or chemical crosslinking
and it expands in biological fluids or water without dissolving
as a consequence of physical or chemical cross-linking [1,2].

Hydrogels are applied in pharmaceuticals [3], agriculture
[4], food additives [5], drug delivery systems, hygienic products,
sealing, artificial snow [6,7], coal dewatering [8], biomedical
applications [9,10], barrier materials to regulate biological
adhesions [11], tissue engineering and wound dressing [12],
diagnostics [13], regenerative medicines [14,15], separation
of cells or biomolecules [16] and biosensors [17].

Smart or stimuli-sensitive hydrogels are undergo huge
changes in the swelling response by changing environmental
conditions, such as pH [18,19], temperature [20], light [21],
pressure [22], electric field [23,24], antigens [25,26] and carbo-
hydrates [27]. Among them, pH-sensitive hydrogels are
developed in the evolution of new drug delivery systems, these
hydrogels changes their properties by respond to the pH of
the solution [28]. These gels are good candidates for drug
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delivery based on pH conditions [29,30]. Hydrogels can absorb
large amounts of water without being dissolved. This is often
thanks to their physical and chemical network of hydrophilic
polymeric chains with -OH, -CONH-, -CONH2 and -COOH
groups [31-34].

Drug delivery systems in medicine can be developed by
utilizing the swelling behaviour of hydrogel [32,33]. Free
radical polymerization is a leading process for the polymeri-
zation of water dissolved monomers and to develop hydrogels
[32,35]. Free radical polymerization is a dynamic and generally
used method and leads to the swift production of the gel even
under moderate condition using lesser molecular weight mono-
mers with the existence of a crosslinker can be used to produce
hydrogels for bio-applications [36].

In this work, a hydrogel using acrylamide as a monomer
and methylene bisacrylamide as the crosslinker by free radical
polymerization is synthesized. The swelling study, FT-IR, SEM
and TGA were performed to evaluate the swelling and struc-
tural characteristics of the obtained gel. The synthesized gel
could also be used as pH and salt-sensitive super absorbent
materials and drug delivery applications.
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EXPERIMENTAL

Acrylamide (AAM), potassium persulphate (PPS), methyl-
enebisacrylamide (MBA), sodium hydroxide, hydrochloric
acid, acetic acid and perchloric acid were obtained from SDFCL,
Mumbai, India. Sodium metabisulfite (SMBS) obtained from
Avra Synthesis Pvt. Ltd., Hyderabad, India. Aluminum chloride,
calcium chloride and sodium chloride were purchased from
Merck, Mumbai, India. Distilled water was used throughout
the experiment.

Preparation of poly(acrylamide) hydrogels: From the
free radical mechanism, poly(acrylamide) hydrogel was synthe-
sized. Primarily free radical initiator pair of potassium persul-
phate and sodium metabisulfite was transferred into a beaker
containing water. Then add acrylamide and stir for 10 min at
room temperature, finally add crosslinker methylenebisacryl-
amide and reaction carried out on a water bath till gel was formed.
Prepared hydrogel washed with water to remove unreacted
materials, then cut into suitable size and dry at 50 ºC in the
oven. Similarly, hydrogel formulations were prepared using
the same method as given in Table-1.

TABLE-1 
SYNTHESIS SCHEMES OF HYDROGELS 

Initiator 
Formulation 

code 
Water 
(mL) 

Acrylamide 
(mg) SMBS 

(mg) 
PPS 
(mg) 

MBA 
(mg) 

AAMH1 10 600 32 45 06 
AAMH2 10 600 32 45 11 
AAMH3 10 600 32 45 16 
AAMH4 10 600 32 45 21 

 
FT-IR analysis: FT-IR analysis of acrylamide, methylen-

ebisacrylamide and synthesized hydrogel were administered
using FT-IR spectrometer (Perkin-Elmer FT-IR C94012) in
the 4000-400 cm-1 range.

Morphology analysis: The surface morphology of the
acrylamide, methylenebisacrylamide and synthesized hydrogel
samples was observed using scanning electron microscopy,
Zeiss, LS15.

Thermal analysis: Thermal stability of hydrogel was perf-
ormed using Perkin-Elmer STA 600 thermogravimetric analyzer.
TGA was performed with a specified amount of sample by
increase the heating rate to 20 ºC.

Swelling study: The swelling study was conducted by
the gravimetric method using dried hydrogels in water, acids
(HCl, CH3COOH, HClO4), base (NaOH), salts (AlCl3, CaCl2,
NaCl) and pH solutions. The dried pre-weighed hydrogel was
placed in water, acid, base, salt and pH solutions to investigate
swelling ratio at specific intervals. The swelled hydrogel was
taken out from the solution and wiped with filter paper for
removing excess water, followed by weight measurement, then
by using eqn. 1 swelling ratio was calculated:

b a

a

W W
(%)Swelling ratio 100

W

−= × (1)

where, Wa = Weight of dried hydrogel and Wb = Weight of
swelled hydrogel.

RESULTS AND DISCUSSION

Poly(acrylamide) hydrogels was synthesized successfully
from acrylamide monomer using sodium metabisulfite and
potassium persulphate as free-radical initiators. The free-radical
polymerization method is used to prepare hydrogels. The free
radicals generated from sodium metabisulfite and potassium
persulphate solution. Then hydroxyl free radicals will generate
by abstract protons from the water molecules and these radicals
further abstract protons from acrylamide and methylenebis-
acrylamide to initiate polymerization [37,38]. In this polymeri-
zation, methylenebisacrylamide is presented as a crosslinker in
the system. The mechanism of the reaction is shown in Scheme-I.
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Scheme-I: Synthesis of poly(acrylamide) hydrogel
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FT-IR studies: FT-IR spectra of acrylamide, methylene-
bisacrylamide and synthesized hydrogel are shown in Fig. 1.
The spectra of the acrylamide monomer (Fig. 1a) show the absor-
ption band around 3349 cm–1 is due to the NH stretching frequ-
ency of the amide group. The peak at 1664 cm–1 is attributed
due to C=O stretching, while the absorption band around 1134
cm–1 is due to the C-N stretching. In the spectra of methylene-
bisacrylamide (Fig. 1b), the peak at 3309 cm–1 is attributed
due to the NH stretching and the absorption band around 1664
cm–1 is due to C=O stretching. The C-N stretching give rise to
a band at 1121 cm–1 and a band at 2958 cm–1 is assigned for C-H
stretching vibrations [39,40]. In the spectra of hydrogel (Fig.
1c), the absorption peak at 3308 cm–1 for the NH stretching is
also observed. The absorption peaks around 2957 cm–1 for C-H
stretching, at 1663 cm–1 for C=O stretching and at 1119 cm–1 for
C-N stretching were also observed.

Morphology studies: The surface morphology play impo-
rtant role in swelling and control release behaviour. Hence, it
is important to explore these properties [41]. SEM images show
the morphology of dried hydrogel. The lower mechanical
strength hydrogels have a higher swelling rate [42]. According
to the SEM images, pure acrylamide and methylenebisacryl-
amide show a crystal surface (Fig. 2a-b). However, the addition
of methylenebisacrylamide increases to acrylamide hydrogel
provides a very smooth and uniform surface structure (Fig.
2c-f).

Thermal study: The thermal behaviour of the synthesized
hydrogel was investigated by TGA and the result is shown in
Fig. 3. The initial weight loss was attributed to the evaporation
of moisture content present in the hydrogel. Poly(acrylamide)
hydrogel was thermally unstable and degradation starts at 159
ºC with mass loss of 5.4%, the second degradation at 294 ºC
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Fig. 1. FT-IR spectra of (a) acrylamide, (b) methylenebisacrylamide and
(c) hydrogel

with mass loss of 5% and more amount of weight loss occurred
at 394 ºC with mass loss of 8% due to breakage of the polymer
chain in the hydrogel [43].

Fig. 2. SEM images of (a) acrylamide, (b) methylenebisacrylamide, (c) AAMH1, (d) AAMH2, (e) AAMH3 and (f) AAMH4
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Fig. 3. Thermogravimetric graph of hydrogel

Swelling study: The swelling study is most important to
figure out its applications. Here we investigated using water,
acid, base, salt and pH solutions. Fig. 4 shows the images of
dried and swollen hydrogel.

(a) (b)

Fig. 4. Digital camera photographs of (a) dried and (b) swollen hydrogel

Swelling study in water: The swelling ratio of the
synthesized hydrogels was studied at 37 ºC in water and results
shown in Fig. 5. When the less amount of crosslinking agent
usage leads to a high swelling ratio due to less crosslinking
points and availability of free space between crosslinking
points, which helps the gels to hold more amount of solvent
molecules. Similarly, more crosslinking agent usage will lead
to less swelling ratio due to more crosslinking points and less
space [44]. Hence, more amount of crosslinker promotes tight-
packed polymer networks, which avoid flexibility and
decreases the space in a polymer network and the swelling
rate decreased. Hence, we used AAMH1 hydrogel for further
study due to its maximum swelling capacity.

Swelling study in acid and base solutions: The swelling
study was investigated in HCl, CH3COOH, HClO4 and NaOH
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Fig. 5. Swelling ratio in water

solutions at room temperature. The results are summarized in
Figs. 6-9. Hydrogels swelling ability will explain the inter-
action between functional groups and osmotic pressure [45].
Under acid solutions like HCl, CH3COOH and HClO4, the
amide group of acrylamide hydrogel is mainly controlled the
swelling capacity. It will get protonated (NH3

+) and electro-
static repulsion occurs with osmotic pressure results shows
swelling. However, in an acidic solution like HCl the screening
effect of chloride counter-ion guard the ammonium cation
charges and avoid a dynamic repulsion in HCl solution. Hence,
swelling was decreased in HCl solution compared to CH3COOH
and HClO4 solution. Under basic condition like NaOH solution,
the -CONH2 and -CONH- groups are deprotonated and electro-
static repulsion occurs. The existence of sodium ions will lead
to high osmotic swelling pressure and help to increase swelling
even in a very low concentration of NaOH solution. The swelling
percentage in acid and base solution is in the order: HCl <
CH3COOH < HClO4 < NaOH [46,47].
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Fig. 6. Swelling ratio in HCl solutions
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Fig. 7. Swelling ratio in CH3COOH solutions
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Fig. 8. Swelling ratio in HClO4 solutions
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Fig. 9. Swelling ratio in NaOH solutions

Swelling study in pH solutions: The swelling study was
investigated at 37 ºC in pH 1 to 12 solutions. The swelling
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ratio depend on the pH of the solution [37]. Fig. 10 shows the
pH response of the poly(acrylamide) hydrogel at 37 ºC. The
stock solutions HCl (pH 1.0) and NaOH (pH 12.0) were diluted
with deionized water to prepare pH solutions and no additional
ions were added to the medium for setting the pH of the solutions
due to the hydrogel is more influenced by ionic strength. The
swelling ratio increased when pH increased from 1 to 12 and
when the temperature increases swelling also increases, it was
evident from the data given [45]. However, up to pH 4.0, we
observed very little swelling due to the screening effect of Cl–

counter-ion. From pH 5 to 12, the swelling increases due to
amide groups are deprotonated and the presence of osmotic
pressure of Na+ ions. The result shows when pH increase the
swelling ratio also increases [46].
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Fig. 10. Swelling ratio of hydrogel in 1 to 12 pH solutions at 37 °C

Swelling study in salt solutions: Fig. 11 shows the swelling
ratio of poly(acrylamide) cross-linked hydrogel in salt solutions
(0.15 M NaCl, CaCl2 and AlCl3). The swelling ratio in water
(Fig. 5) is more compared to the salt solutions due to the presence
of the additional ions and leads to the osmotic pressure between
the hydrogel network and external solution with screening effect.
The swelling percentage decrease when increase the charge
of the metal cation (Na+ > Ca2+ > Al3+) [37,45]. In crosslinked
hydrogel, the screening effect of chloride counterion and
complex formation between ionic groups leads to crosslinking
density increases and swelling capacity decreases.
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Fig. 11. Swelling ratio in salt solutions

Conclusion

In this investigation, the poly(acrylamide) hydrogels were
synthesized by using both potassium persulphate and sodium
metabisulfite as a free radical generator for polymerization.
Different hydrogels were synthesized by increasing the amount
of crosslinker. The increasing amount of crosslinker will affect
the characterization and swelling study. Furthermore, the
swelling ratio changes based on the composition of the hydro-
gel, ionic strength, temperature and pH. Synthesized hydrogels

exhibit good swelling nature in water, pH, acid, base and salt
solutions. The composition of hydrogel and the surrounding
environment will affect the swelling capacity. The swelling
response of the hydrogel may be considered a good material
for the design of controlled release fertilizers in agricultural
applications and biomedical drug delivery systems.
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