

Growth, Experimental Studies and DFT Calculations on Gallic acid 5-Nitrouracilate Single Crystals for Non-linear Optical Applications

A. VENKATESAN^{1,2,6}, S. ARULMANI^{3,6}, E. CHINNASAMY^{4,6}, S. SENTHIL^{3,6} and M.E. RAJA SARAVANAN^{1,*,6}

¹Department of Physics, Government Arts College, Salem-636007, India

²Department of Physics, Arignar Anna Government Arts College, Villupuram-605602, India

³Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai-600035, India

⁴Department of Physics, St. Joseph's College (Arts & Science) Kovur, Chennai-600128, India

*Corresponding author: E-mail: merajasaravanan@gmail.com

Received: 21 January 2021;	Accepted: 1 March 2021;	Published online: 16 April 2021;	AJC-20328

The growth and characterization of gallic acid 5-nitrouracilate (GA5NU) single crystals were grown using slow evaporation solution growth technique at room temperature. Single crystal XRD analysis revealed that the grown crystal belongs to monoclinic crystal system. HOMO-LUMO and molecular electrostatic potential (MEP) has been visualized and analyzed. The presence of various functional groups present in the host material was examined using FTIR spectra. Mechanical stability of the grown crystal is validated using Vickers microhardness study and the grown crystal belongs to soft material category. Various hardness parameters like fracture toughness, brittleness index, elastic stiffness constant, tensile strength and other hardness parameters were also calculated. Thermal stability of the grown crystal was also determined. The second harmonic generation (SHG) efficacy of grown crystal was 2.97 times higher than potassium dihydrogen phosphate (KDP), which makes the grown crystal as suitable candidate material for non-linear optical applications.

Keywords: NLO single crystal, Gallic acid 5-Nitrouracilate, DFT calculations, Mechanical studies, Thermal analysis.

INTRODUCTION

The unforeseen advances in the area of non-linear optics have been revolutionized in the field of optical memory storage devices, production of display technologies and telecommunications. In contrast with inorganic host, organic materials exhibit massive nonlinear optics (NLO) response due to the presence of active π -bonds. The π -electron mechanism in organic host asymmetrized by electron acceptor and donor group is extensively polarizable entities for NLO applications [1,2]. 3,4,5-Trihydroxybenzoic acid is termed as gallic acid and it's an organic compound present in variety of herbs and foods [3,4]. Other than antioxidant and anticancer properties [5], it also has medicinal applications for allergic diseases like allergic rhinitis, sinusitis, asthma owing to its ability to hinder the histamine release and the production of anti-inflammatory cytokines [4,6]. Three hydroxyl group of this acid having both hydrogen bonding acceptor and donor characteristics. In addition to that, O-H part of this group has strong hydrogen bonded donor groups while C=O section of carboxylic acid category has

strong hydrogen bonded acceptor properties [7,8]. The present material researchers started to focus on 5-nitrouracil due to its immense number of applications in the pharmaceutical fields [9,10]. In present work, the computational (DFT), structural, spectral, dielectric, thermal, microhardness and powder second harmonic generation (SHG) properties of gallic acid 5-nitrouracilate crystals (GA5NU) are reported.

EXPERIMENTAL

Synthesis: Commercially available gallic acid ($C_7H_6O_5$) (TCI, 99%) and 5-nitrouracil ($C_4H_3N_3O_4$) (Sigma-Aldrich, 99%) were taken in equimolar ratio (1:1) and the mixture is dissolved in double distilled water and allowed the solution for constant stirring of about 8 h. After stirring, the as-synthesized solution was filtered using Whatmann filter paper to elude the insoluble particles and the upper part of the beaker was sealed with perforated sheet with tiny holes, kept the beaker undisturbed for slow evaporation. After successive recrystallization process, white coloured good quality crystals were

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

1086 Venkatesan et al.

harvested within a time span of 35-40 days and the photograph of as-synthesized crystal is shown in Fig. 1.

Fig. 1. Photograph of as-grown GA5NU crystal

RESULTS AND DISCUSSION

Single crystal XRD analysis: The lattice parameters and space group of the grown crystal is determined using single crystal XRD analysis. The grown crystal belongs to monoclinic crystal system with $P2_1$ /m space group and the crystal refinement data is shown in Table-1.

TABLE-1 CRYSTAL STRUCTURE AND REFINEMENT FOR GA5NU CRYSTAL				
Empirical formula	$C_{11}H_9N_3O_9$			
Molecular weight	159.22			
Temperature	274 (2) K			
Wavelength	0.71073 Å			
Crystal system, space group	Monoclinic, P2 ₁ /m			
Unit cell dimensions	$a = 7.4581(6) \text{ Å}; \alpha = 90^{\circ}$			
	$b = 9.3526(3) \text{ Å}; \beta = 92.251(3)^{\circ}$			
	$c = 12.8457(9) \text{ Å}; \gamma = 90^{\circ}$			
Volume	173.18(9) Å ³			
Z, Calculated density	7, 1.457 Mg/m ³			

Computational details: The theoretical calculations were completed by Gaussian 09 program on Intel Pentium dual core with the 1.80 GHz processor and demonstrated with Gauss view 6.0. The fundamental errand of computational calculations was to build an enhanced structure with least energy. The result of this run yields with minimum energy was -834.65815 a.u. The estimation was performed utilizing Beckee exchange potential (B3LYP) method under the basis set 6-311++G(d,p) because of its simplicity with minimum time consumption.

HOMO-LUMO: The ability to add an electron is mentioned as HOMO while the ability to acquire and electron is expressed by LUMO energy. The eigen value of HOMO and LUMO and their energy gap reflect the chemical activity of the molecule. The calculated energies of GA5NU molecules are $E_{HOMO} = -0.23963$ a.u., $E_{LUMO} = -0.18469$ a.u. and $\Delta E =$ 0.05524 a.u. (Fig. 2). Using Koopman's theorem, other electrical transport properties like electron affinity (A), chemical hardness (η) and other properties are listed in Table-2.

Molecular electrostatic potential (MEP) analysis: This study explains about the nature of reaction mechanism among the molecules, *i.e.* electrophilic and nucleophilic conditions.

Fig. 2. HOMO-LUMO structure of GA5NU crystal

TABLE-2 LIST OF PARAMETERS CALCULATED USING HOMO-LUMO				
Molecular properties B3LYP/6-311G (d,p)				
HOMO _{energy}	-0.23963			
LUMO _{energy}	-0.18439			
HOMO-LUMO _{energygap}	-0.05524			
Ionization potential (I)	0.23963			
Electron affinity (A)	0.18439			
Chemical hardness (η)	0.02762			
Reciprocal of hardness (S)	18.10282			
Chemical potential (µ)	-0.21201			
Electronegativity (χ)	0.21201			
Electrophilicity index (ω)	0.81369			
Nucleofugality (ΔE_n)	0.6156			
Electrofugality (ΔE_e)	1.0432			

The MEP map of GA5NU single crystal is shown in Fig. 3. The colour code of MEP ranges from -1.213×10^{-2} to 1.213×10^{-2} by using Gaussview 6.0 program with DFT/6-311++ G(d,p). The electrostatic potential distribution of colour is increased in the order of red < orange < yellow < green < cyan < blue. The most positive area is called nucleophilic site and represented by the blue region. For GA5NU crystal, around hydrogen atom present in the molecule have more positive region which is appeared by blue colour (proton acceptor) nearest to the oxygen atom indicates the negative region of the molecule as shown by red colour (electron acceptor). The coloured region of the structure was recognized by electron and proton interactions, which shows good NLO reactivity of the compound.

Fig. 3. MEP analysis of GA5NU molecule

FTIR spectra: FTIR spectral analysis was performed using Perkin-Elmer FTIR spectrometer in the wavelength range 4000 and 500 cm⁻¹ and the obtained spectra is shown in Fig. 4. The strong, broad peak inferred at 3452 cm⁻¹ is due to intermolecular bonded O–H stretching. The weak peak arises at 3052 cm⁻¹ is due to intramolecular bonded O–H stretching. Small medium peak occurs at 2649, 2813 cm⁻¹ occurs due to C–H stretching. A small peak at 2011 cm⁻¹ is due to C–H bending. Various spectral assignments are given in Table-3.

Mechanical study: The hardness test was carried out using Futuretech FM 800 type E series for constant indentation period of 10 s and diagonal length 'd' is measured for varying loads 'P'. Variation of H_v against load P is shown in Fig. 5 and plot of log P vs. log d (Fig. 6) yields straight line and the slope gives work hardening coefficient 'n' and the value of n is found out to be 2.14 and the grown crystal comes under soft material category. According to reverse indentation size effect (RISE) the hardness value increases with increasing loads and in normal indentation size effect (ISE), H_v value decrease with increasing loads [11-13].

The elastic stiffness constant (C_{11}) was calculated using eqn. 1 [14]:

Wooster empirical relation
$$C_{11} = (H_v)^{7/4}$$
 (1)

Brittleness index (B_i) is another property of mechanical behaviour is calculated using eqn. 2:

$$B_{i} = \frac{H_{v}}{K_{c}}$$
(2)

where ' K_c ' is coined as fracture toughness and it is calculated using eqn. 3 [15]:

$$K_{c} = \frac{P}{\beta c^{3/2}}$$
(3)

The value of $\beta = 7$ for Vicker's indenter, c is known as crack length and it is measured from the midpoint of the indentation mark to the tip of crack.

The tensile strength of the crystal (T) and yield point (Y) was calculated using the following relations [16]:

Tensile strength (T) =
$$0.2 \text{ H}_v + 6$$
 (4)

Yield point (Y) =
$$0.23 H_v - 13.5$$
 (5)

The mechanical parameters such as K_1 , K_2 , H_v , K_c , B_i , σ_v and C_{11} obtained for grown crystal are given in Table-4.

TABLE-4 CALCULATED HARDNESS PARAMETERS OF GA5NU CRYSTAL				
Parameters	Values			
n	2.14			
K_1 (kg mm ⁻¹)	0.0535			
K_2 (kg mm ⁻¹)	1.146			
$H_v (kg m m^2)$	102.278			
K_{c} (MN m ^{-3/2})	0.3134			
$B_i (m^{-1/2})$	31.104			
$C_{11} \times 10^{14} Pa$	61.796			
σ_{v} (M Pa)	72.458			
Tensile strength T (M Pa)	116.24			
Yield point Y (M Pa)	18.72			

Thermal analysis: TG-DTA thermogram was carried out in nitrogen atmosphere and recorded at a heating rate of 20 °C/min. There was a sharp weight loss at 240 °C, which is attributed to the decomposition of grown crystal (Fig. 7). Below the onset of decomposition, no significant weight loss was observed hence the crystal is completely free from physically adsorbed water. DTA trace indicates an intense sharp endothermic, covering the temperature range 240 to 260 °C and it is interesting to note the absence of any exotherm/endotherm process occured below > 240 °C. From thermal analysis, it was also observed that decomposition occurs in successive steps but the process of disintegration is very slow process [17,18]. Hence, the grown material is capable for NLO applications upto 240 °C.

Asian J. Chem.

SHG analysis: GA5NU frequency doubling efficacy was determined using Kurtz and Perry powder technique. The sample was irradiated to Q-switched Nd:YAG laser of wavelength 1064 nm, 10 ns pulse width. SHG signal emitted at 532 nm was separated from the fundamental frequency by using IR separator. From the detectors coupled to read output energy, the peak intensity was observed to be 2.97 times higher than that of urea. The SHG efficacy of grown crystal is in comparison with other reported crystals (Table-5).

Conclusion

The gallic acid 5-nitrouracilate crystals (GA5NU) single crystal was synthesized using slow evaporation solution growth method. The SXRD analysis substantiates the grown crystal belongs to monoclinic crystal system with space group $P2_1/m$. The presence of various functional groups present in the host material was affirmed by FTIR analysis. From Vicker's microhardness study, the mechanical strength of the grown crystal was determined and exhibits a reverse indentation size effect. From thermal analysis, it was evident that the grown material is capable for NLO applications upto 240 °C. The SHG efficacy is 2.97 times higher than standard KDP.

ACKNOWLEDGEMENTS

One of the authors, (S. Arulmani) thanks the University Grants Commission), India for the award of Senior Research Fellowship (SRF) (201516-RGNF-2015-17-SC-TAM-23685).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- S.M. Sharipova and A.A. Kalinin, *Chem. Heterocycl. Comp.*, **53**, 36 (2017); <u>https://doi.org/10.1007/s10593-017-2017-9</u>
 A. Driessen, Nonlinear Optics for the Information Society, Springer (2007).
- 3. S. Kiokias, C. Proestos and V. Oreopoulou, *Foods*, **9**, 534 (2020);
- https://doi.org/10.3390/foods9040534
- B. Badhani, N. Sharma and R. Kakkar, *RSC Adv.*, 5, 27540 (2015); <u>https://doi.org/10.1039/C5RA01911G</u>
- M. Daglia, A. Di Lorenzo, S.F. Nabavi, Z.S. Talas and S.M. Nabavi, *Curr. Pharm. Biotechnol.*, 15, 362 (2014); https://doi.org/10.2174/138920101504140825120737
- S. Choubey, S. Goyal, L.R. Varughese, V. Kumar, A.K. Sharma and V. Beniwal, *Mini-Rev. Med. Chem.*, **18**, 1283 (2018); https://doi.org/10.2174/1389557518666180330114010
- R. Kaur, S. Cherukuvada, P.B. Managutti and T.N.G. Row, *CrystEngComm*, 18, 3191 (2016);
- https://doi.org/10.1039/C5CE01965F
- K.L. Jyothi, R. Gautam, D. Swain, T.N. Guru Row and N.K. Lokanath, *Cryst. Res. Technol.*, 54, 1900016 (2019); <u>https://doi.org/10.1002/crat.201900016</u>

TABLE-5 COMPARISON OF SHG EFFICIENCY WITH OTHER REPORTED CRYSTALS				
Crystal	SHG efficiency	Ref.		
Gallic acid 5-nitrouracilate (GA5NU)	2.97	Present work		
4-N,N-Dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS)	2.20	[19]		
N-Benzyl-2-methyl-4-nitroaniline (BNA)	2.25	[20]		
6-Methyl nicotinic acid (6MNA)	2.00	[21]		
4-Hydroxy tetramethylpiperazinium picrate (TMPP)	1.50	[22]		

- R.M. Shaker, M.A. Elrady and K.U. Sadek, *Mol. Divers.*, 20, 153 (2016); <u>https://doi.org/10.1007/s11030-015-9595-1</u>
- E. Colacino, G. Sindona, G. Gosselin and C. Mathé, *Nucleos., Nucleot. Nucleic Acids*, 22, 2013 (2003); <u>https://doi.org/10.1081/NCN-120026403</u>
- P.S.L. Mageshwari, R. Priya, S. Krishnan, V. Joseph and S.J. Das, *Opt. Laser Technol.*, 85, 66 (2016);
- https://doi.org/10.1016/j.optlastec.2016.06.002 12. S. Krishnan, C.J. Raj, R. Robert, A. Ramanand and S.J. Das, *Cryst. Res. Technol.*, **42**, 1087 (2007); https://doi.org/10.1002/crat.200710981
- 13. D.A. Kumar, R.S. Babu and S. Kalainatha, *Opt. Mater.*, **109**, 110286 (2020);
- https://doi.org/10.1016/j.optmat.2020.110286 14. W.A. Wooster, *Rep. Prog. Phys.*, **16**, 62 (1953);
- https://doi.org/10.1088/0034-4885/16/1/302 15. M.P. Nancy, J.R. Priya and J.M. Linet, *J. Mater. Sci. Mater. Electron.*, **31**, 8144 (2020);
 - https://doi.org/10.1007/s10854-020-03265-2
- D. Sivavishnu, R. Srineevasan and J. Johnson, *Mater. Sci. Energy Technol.*, 1, 205 (2018); https://doi.org/10.1016/j.mset.2018.08.004

- J. Arumugam, M. Selvapandiyan, S. Chandran, M. Srinivasan and P. Ramasamy, *Appl. Phys., A Mater. Sci. Process.*, **126**, 888 (2020); <u>https://doi.org/10.1007/s00339-020-04077-1</u>
- K. Senthil, K. Elangovan, A. Senthil and G. Vinitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 247, 119063 (2021); <u>https://doi.org/10.1016/j.saa.2020.119063</u>
- T.H. Wang, L. Cao, D. Zhong, J. Liu, F. Teng, S. Ji, S. Sun, J. Tang and B. Teng, *CrystEngComm*, **21**, 2754 (2019); <u>https://doi.org/10.1039/C9CE00150F</u>
- R. Kalaivanan and K. Srinivasan, Opt. Laser Technol., 90, 27 (2017); <u>https://doi.org/10.1016/j.optlastec.2016.11.001</u>
- S. Delphine, A.R.S.J. Rani Juliet, S. Janarthanan and R.S. Samuel, *Opt. Laser Technol.*, 90, 133 (2017); <u>https://doi.org/10.1016/j.optlastec.2016.11.013</u>
- T. Dhanabal, G. Amirthaganesan, M. Dhandapani and S.K. Das, J. Chem. Sci., 124, 951 (2012); https://doi.org/10.1007/s12039-012-0289-2