Asian Journal of Chemistry

Potentiometric Determination of Some Strong Oxidants Using Fluoride Ion-Selective Electrode

M.A. KARIMI*[†], M. MAZLOUM ARDAKANI[‡] and M. TADAYON[†] Department of Chemistry, Faculty of Sciences, Payame Noor University (PNU), Sirjan, Iran Fax: (98)(345)5233540; E-mail: m_karimi@pnu.ac.ir; ma_karimi43@yahoo.com

> A new, simple, inexpensive and sensitive method for the microdetermination of strong oxidants of hydrogen peroxide (H_2O_2) , peroxyacetic acid (PAA), permanganate (MnO_4^{-}), dichromate ($Cr_2O_7^{2-}$), chromate (CrO_4^{2}) and cerium(IV) has been investigated and developed. In this work, the oxidation reaction of Fe(II) to Fe(III) in the presence of oxidants is based on the method. The change potential of complexation of flouride ion with Fe(III) was monitored by a fluoride ion-selective electrode. A series of experiments were conducted to establish the optimum analytical parameters to achieve maximum sensitivity in the determination of above oxidants. The experimental parameters such as ionic fluoride and iron(II) concentrations, temperature and pH of solutions were optimized. The results showed that determination of H2O2, peroxyacetic acid, MnO4-, $Cr_2O_7^{2-}$, CrO_4^{2-} and Ce(IV) could be performed in their concentration ranges of 1.0-1.0, 0.1-10.0, 0.1-10.0, 0.1-20.0 and 0.5-20.0 µg mL⁻¹, respectively. The proposed method was successfully applied to the determination of strong oxidants in synthetic water samples.

> Key Words: Strong oxidants, Potentiometric determination, Fluoride ion-selective electrode.

INTRODUCTION

Hydrogen peroxide (H_2O_2), peroxyacetic acid (PAA), permanganate (MnO_4^{-}), dichromate ($Cr_2O_7^{-2}$), chromate (CrO_4^{-2-}) and cerium(IV) are strong oxidants in chemistry. H_2O_2 is used widely as a disinfectant and a bleaching agent in various industrial and household products¹. Peroxyacetic acid is widely used in the food industry for disinfecting buildings and equipment and for sterilizing plastic bottles particularly it used for packaging fruit juices and sweetened drinks. It is also used for medical purposes, mainly for sterilizing the surfaces of the instruments². Permanganate is used as an oxidizing agent in diverse chemical reactions in the laboratory and industry for the synthesis of many different kinds of chemical compounds³. It is also used as disinfectant, deoderizer, aquaculture, wastewater treatment, neutralize hydrogen sulfide biomedical and miscellaneous^{4,5}. Dichromate is a common inorganic chemical

[†]Department of Chemistry, Faculty of Sciences, Payame Noor University (PNU), Ardakan, Iran. ‡Department of Chemistry, Faculty of Sciences, Yazd University, Yazd 89195-741, I.R. Iran.

3720 Karimi et al.

Asian J. Chem.

reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications³. It also used to oxidize alcohols, determination of ethanol, cleaning laboratory glassware of organic contaminants^{3,4}. Cerium(IV) is industrially important and is used in nuclear reactors, alloys with nickel and chromium, microwave devices, lasers, agriculture and miscellaneous⁴⁻⁶. In analytical chemistry, standardized aqueous solutions of MnO_4^- , $Cr_2O_7^{2-}$ and Ce(IV) are some times used as oxidizing titrants for redox titrations. Therefore, determination of these oxidants is very important. Several methods have been reported for the determination of them such as titrimetry^{7,8}, electroanalytical techniques⁹⁻¹¹, spectrophotometry¹²⁻¹⁶, chemiluminescence¹⁷ and chromatography¹⁸⁻²⁰.

To the best of our knowledge, no one has reported any potentiometric method for the determination of oxidants by ion-selective electrodes. In this paper, is shown that potentiometric method using fluoride ion selective electrode (FISE) can be employed for the determination of strong oxidants such as H_2O_2 , PAA, MnO_4^- , $Cr_2O_7^{2-}$, CrO_4^{2-} and Ce(IV). In this work, the oxidation reaction of Fe(II) to Fe(III) in the presence of oxidants is based of the method and the change potential of complexation of flouride ion with Fe(III) was monitored by a fluoride ion-selective electrode (FISE). Application of potentiometric technique using FISE for the determination of oxidants is high selectivity, sensitivity and freedom from optical interferences. Therefore, this method is applicable to determination coloured and turbid solutions.

EXPERIMENTAL

All reagents were analytical reagent grade. Triply distilled water was used throughout the study. Stock solutions (1000 μ g mL⁻¹) of H₂O₂, PAA, MnO₄⁻, Cr₂O₇²⁻, CrO₄²⁻ and Ce(IV) were prepared in 100 mL flasks by dissolving 0.25 mL of hydrogen peroxide (Merck), 0.22 mL of peracetic acid (Merck), 0.1329 g of potassium permanganate (Merck), 0.1369 g of potassium dichromate (Merck), 0.1674 g of sodium chromate (Merck) and 0.2885 g of Ce(SO₄)₂·4H₂O (Merck) in water and diluting with water to the mark. H₂O₂ and PAA are unstable and prepared repeatly after 1 h. Solutions of H₂O₂ and PAA are stored in dark bottles in low temperature. A stock solution of 0.05 M iron(II) was prepared by dissolving 1.463 g of FeSO₄·7H₂O (Merck) in water and diluting with water to the mark. A 0.1 mol L⁻¹ fluoride solution stock was prepared by dissolving 0.4199 g of sodium flouride (Merck) in water and diluting to 100 mL and was stocked in a polyvinyl chloride (PVC) flask. Acetate buffer solution (0.05 M, pH 3.0) was prepared using acetic acid and NaOH solutions and adjusting its pH with a pH meter.

A solid-state fluoride-selective electrode (Metrohm Model 6.0502.150) was used in conjunction with a double junction Ag/AgCl reference electrode (Metrohm Model 6.0726.100), whose outer compartment was filled with a 10 % (w/v) KNO₃ solution. The Metrohm Model 780 potentiometer, attached to a Pentium(IV) computer, was used for recording the potentiometric data. All measurements were carried out

in a thermostated $(25.0 \pm 0.2 \text{ °C})$, double-walled reaction cell with continuous magnetic stirring. The electrode was stored in 1×10^{-3} M potassium chloride solution when not in use. For pH measurements, a Metrohm Model 780 pH meter with combination glass electrode was used.

Procedure: 25.0 mL of double distilled water, 2.0 mL of buffer solution, 1.0 mL of stock fluoride solution and 1.0 mL stock solution of iron(II) were added to the thermostated ($25.0 \pm 0.2 \,^{\circ}$ C) reaction cell. 10.0 mL of the standard or sample solution of H₂O₂, PAA, MnO₄⁻, Cr₂O₇²⁻, CrO₄²⁻ or Ce(IV) was injected into the cell quickly and after the stabilization of the potential all data were recorded. The potential changes *versus* time were recorded at the time intervals of 1.0 s. After each run the cell was emptied and washed twice with double distilled water.

Using the standard analyte solutions, a calibration graph of $(10^{\Delta E/S}-1)$ versus concentration (fixed-time method)²¹ is constructed, where ΔE is the potential variation in a selected time interval Δt (usually 100 s) and S is the slope of the fluoride electrode response, which is determined periodically by successive additions of micro-amounts of 100 µL of 1.0×10^{-2} -3.0 M NaF standard solutions in 25.0 mL of water mixed with 2.0 mL of buffer solution. The potentiometric slope of the electrode response (s) was checked periodically by successive addition of NaF standard solutions.

RESULTS AND DISCUSSION

A series of experiments were conducted to establish the optimum analytical to achieve maximum sensitivity in the determination of H_2O_2 , PAA, MnO_4^- , $Cr_2O_7^{2-}$, CrO_4^{2-} or Ce(IV). The experimental parameters, such as iron(II) and fluoride concentrations, temperature and pH of solutions were optimized.

Study of electrode characteristics: The very fast response of FISE and its Nernstian behaviour toward fluoride ions in acidic solutions indicates that this electrode might be employed effectively in the studies of reactions involving changes in the fluoride ion concentration. The characteristics of the fluoride-selective electrode in the acetate buffer were studied. In order to evaluate the operating characteristics of the FISE at pH < 4, calibration graphs were constructed for sodium fluoride in the concentration range of 1.0×10^{-2} – 1.0×10^{-6} M at pHs 4.0, 3.0, 2.5 and 2.0. The slope was found to be 56.8 mV/decade and remained almost constant to 0.2 mV over 7 months of usage in this system at pH 3.0.

Effect of iron(II) concentration: Fig. 1 shows the effect of iron(II) concentration on the potential changes (ΔE) in the concentration range of 5.0×10^{-2} - 5.0×10^{-4} M. The results showed that at 5.0×10^{-3} M Fe(II), the ΔE for all species was highly. As it is seen, at high concentrations of iron(II), the ΔE due to Fe(III)-fluoride complex formation decreases. This might be due to the fact that high concentrations of Fe(II) would result in a positive interference from Fe(II) that could have arisen from incomplete conversion of Fe(II) to Fe(III)-fluoride complex *via* mixed ligand complex formation. Thus, a concentration of 5.0×10^{-3} M Fe(II) was chosen as the optimum iron(II) concentration.

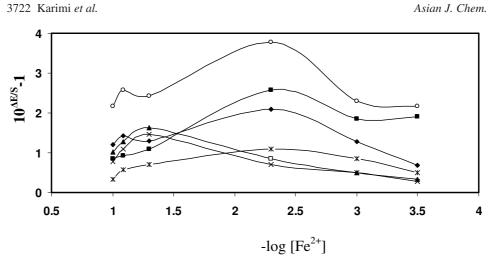


Fig. 1. Effect of Fe²⁺ concentration on the reaction of 10.0 μ g mL⁻¹ of PAA (\blacklozenge), Ce⁴⁺ (*), H₂O₂ (**o**), MnO₄⁻ (**n**), Cr₂O₇²⁻ (\bigstar) and CrO₄²⁻ (**x**). Conditions: 1.0 × 10⁻³ M F⁻, pH 3.0, 25 °C

Effect of fluoride concentration: The effect of F^- concentration over the ranges of 1.0×10^{-5} - 1.0×10^{-1} M fluoride ion on the potential changes (ΔE) and linear range of calibration graph of oxidants was investigated. When the concentration of F⁻ is low, a gentle slope in the calibration graph is realized while a high concentration of F⁻ produces is high a steep slope in the calibration graph. The results show that only when the concentration of F⁻ is higher than 10 times actual detection limit of the electrode a linear calibration graph may be obtained. The results also indicate that the concentration of F^- has a great effect on the linear range and the change potential value. The linear range of the calibration graph is about 0.3-4.0 times the concentration of F⁻. Moreover, if the reaction be employed as a pseudofirst-order reaction, concentration of fluoride in this work would be of great importance. So the fluoride concentration must be in excess, but by increasing the fluoride concentration, the potential change is decreased and the sensitivity is lower. If the fluoride concentration is too low, the potential may not be steady. Since, maximum values of potential change with all oxidants were observed in concentration of $1.0 \times$ 10^{-3} M. Therefore, a concentration of 1.0×10^{-3} M fluoride ion was selected as the optimum concentration for further studies.

Effect of pH: Acidity of the solution influences potential response of FISE and the complexation rate of Fe³⁺ with fluoride. The effect of pH on the potential change of Fe³⁺ with F⁻ over the pH range of 1.0 to 5.0 was examined. As shown in Fig. 2, Fe³⁺ had larger values of potential change (Δ E) in the pH of 3.0. Above pH 3.0, the potential change decreased evidently due to the occurrence of the hydrolysis reaction competing with the complexation between fluoride and metal ions and under pH 3.0, the potential change decreased too, probably owing to the formation of hydrogen fluoride, to which the fluoride electrode is insensitive. Thus, pH of 3.0 was selected as the optimum pH for further studies.

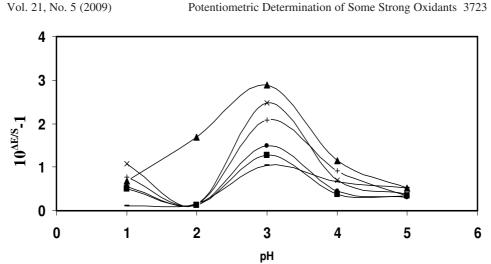


Fig. 2. Effect of pH on the on the reaction of 10.0 μ g mL⁻¹ of PAA (+), Ce⁴⁺ (-), H₂O₂ (**△**), MnO₄⁻ (**×**), Cr₂O₇²⁻ (**♦**) and CrO₄²⁻ (**■**) reactions. Conditions: 1.0 × 10⁻³ M F⁻, 1.0 × 10⁻³ M Fe²⁺, 25 °C

Effect of temperature: The temperature of solution evidently affects the reaction rate of the kinetic reaction. But higher temperatures do not have a positive effect on the complexing reaction of Fe³⁺ with fluoride. Therefore, the temperature of solution was kept at 25.0 ± 0.2 °C by thermostatic water bath in all of the measurements.

Analytical parameters: A linear correlation was found between $(10^{AE/S}-1)$ and concentration for each oxidants and concentration in the range given in the Table-1. Intercepts, slopes and corrrlation coefficients for the calibration data of the H₂O₂, PAA, MnO₄⁻, Cr₂O₇²⁻, CrO₄²⁻ and Ce(IV) are also presented in the Table-1.

 TABLE-1

 CHARACTERISTIC OF CALIBRATION GRAPHS FOR THE DETERMINATION OF

 H₂O₂, PAA, MnO₄⁻, Cr₂O₇²⁻, CrO₄²⁻ AND Ce(IV)

Species	Linear range (µg mL ⁻¹)	Slope (mL µg ⁻¹)	Intercept	Correlation coefficient $(n = 7)$	Detection limit* (µg mL ⁻¹)
H ₂ O ₂	0.1-20.0	0.9194	9.3704	0.9992	0.05
PAA	0.1-10.0	0.0940	0.2987	0.9991	0.06
MnO_4^-	0.1-10.0	0.2220	1.3039	0.9999	0.08
$Cr_2O_7^{2-}$	0.1-20.0	0.0633	1.2162	0.9990	0.05
CrO_4^{2}	0.5-20.0	0.0508	0.2298	0.9991	0.20
Ce ⁴⁺	1.0-30.0	0.0365	0.1651	0.9980	0.50

*Concentration corresponding to a net analytical signal equals to three limes the standard deviation of the blank.

Interference study: The study of interference ions was performed by a standard mixture solution containing $10 \,\mu\text{g mL}^{-1}$ of each both oxidants and a certain amount of foreign ions. The following excesses of ions do not interfere (*i.e.*, caused a relative error of less than 5 %): more than a 1000-fold (largest amount tested) amount of

3724 Karimi et al.

Na⁺, K⁺, Zn²⁺, Cu²⁺, Cd²⁺, Mg²⁺, Be²⁺, Bi³⁺, As³⁺, IO₃³⁻, I⁻, Br⁻, Cl⁻, NO₃⁻, BO₃³⁻, C₂O₄²⁻, CH₃COO⁻; a 100-fold amount of Mn²⁺, Ni²⁺, Co²⁺, Pb²⁺, Cr³⁺, Ca²⁺; a 10-fold amount of SO₄²⁻, PO₄³⁻, Hg²⁺ and a 1-fold amount of Zr⁴⁺, Ti⁴⁺, Al³⁺.

Application: To evaluate the analytical applicability of proposed method, known amounts of H_2O_2 , PAA, MnO_4^- , $Cr_2O_7^{2-}$, CrO_4^{2-} and Ce(IV) were spiked into some water samples. The results (Table-2) demonstrate that the proposed method can be employed satisfactorily for the determination of oxidants in water samples.

TABLE-2
DETERMINATION OF H ₂ O ₂ , PAA, MnO ₄ ⁻ , Cr ₂ O ₇ ⁻² , CrO ₄ ⁻² AND
Ce(IV) IN DIFFERENT WATER SAMPLES (n = 4)

Commla	Spiked (µg mL ⁻¹)							
Sample	Ce(IV)	$Cr_2O_7^{2-}$	MnO_4^-	CrO ₄ ²⁻	H_2O_2	PAA		
Mineral water	2.0	2.0	2.0	2.0	2.0	2.0		
	5.0	5.0	5.0	5.0	5.0	5.0		
	8.0	8.0	8.0	8.0	8.0	8.0		
Tap water	2.0	2.0	2.0	2.0	2.0	2.0		
	5.0	5.0	5.0	5.0	5.0	5.0		
	8.0	8.0	8.0	8.0	8.0	8.0		
Well water	2.0	2.0	2.0	2.0	2.0	2.0		
	5.0	5.0	5.0	5.0	5.0	5.0		
	8.0	8.0	8.0	8.0	8.0	8.0		
Sample	Found (µg mL ⁻¹)							
	Ce(IV)	$Cr_2O_7^{2-}$	MnO_4^-	CrO_{4}^{2}	H_2O_2	PAA		
Manual	2.12(±0.12)	1.97(±0.09)	1.96(±0.17)	2.13(±0.14)	2.08(±0.10)	2.04(±0.11)		
Mineral water	5.21(±0.23)	4.88(±0.20)	4.93(±0.28)	4.81(±0.27)	5.07(±0.22)	4.97(±0.25)		
	8.30(±0.34)	8.25(±0.35)	7.52(±0.26)	7.32(±0.21)	8.13(±0.24)	8.10(±0.22)		
Tap water	2.15(±0.10)	1.91(±0.13)	1.91(±0.15)	2.17(±0.16)	2.10(±0.10)	2.05(±0.12)		
	5.25(±0.16)	4.88(±0.20)	5.20(±0.23)	5.23(±0.18)	4.92(±0.20)	5.03(±0.22)		
	7.73(±0.32)	7.82(±0.30)	$7.77(\pm 0.42)$	8.27(±0.24)	8.19(±0.32)	8.07(±0.25)		
Well water	2.20(±0.15)	2.15(±0.14)	2.13(±0.17)	2.15(±0.14)	1.93(±0.08)	1.95(±0.13)		
	5.37(±0.13)	4.73(±0.16)	5.32(±0.33)	5.35(±0.27)	5.34(±0.12)	5.22(±0.20)		
	0.68(±0.23)	7.75(±0.26)	7.73(±0.36)	8.41(±0.24)	7.83(±0.25)	8.13(±0.25)		

Conclusion

In this work, it is shown that potentiometric method using fluoride ion-selective electrode can be well adopted for determination of oxidants. The proposed method as new, inexpensive and sensitive method offer good accuracy and precision that can be applied for a wide range of H_2O_2 , PAA, MnO_4^- , $Cr_2O_7^{2-}$, CrO_4^{2-} and Ce(IV) concentrations. In this method, it is not required to use complex pretreatment or toxic organic solvents. In other words, this method belongs to green chemistry.

Vol. 21, No. 5 (2009)

Potentiometric Determination of Some Strong Oxidants 3725

ACKNOWLEDGEMENT

The authors wish to thank for the Payame Noor University of Ardakan for the support of this work.

REFERENCES

- 1. Y. Li, Food Chem. Toxicol., 34, 887 (1996).
- 2. C.L. Forbe, Pulp. Pap., 66, 90 (1992).
- 3. A.J. Fatiadi, Synthesis, 749 (1987).
- 4. B.B. Obeng, Br. J. Clin. Pract., 22, 465 (1968).
- 5. R.H. Steinberg, Appl. Spectrochem., 7, 163 (1953).
- 6. J.R. Wright, E. Calkins and R.L. Humphrey, Lab. Invest., 36, 274 (1977).
- 7. M.K. Joshi, Fresenious J. Anal. Chem., 159, 283 (1985).
- 8. N.P. Sosnina, T.N. Krasnova and N.D. Zubkova, Chem. Tech. Fuels Oils, 8, 459 (1972).
- 9. H. Rajantie and D.E. Willams, *Analyst*, **126**, 80 (2001).
- 10. J. Ruz, A. Rios, M.D.L. de Castro and M. Valcarcel, Anal. Chim. Acta, 186, 139 (1986).
- 11. H. Mueller and E. Hansen, *Chem. Tech.*, **42**, 304 (1990).
- 12. E. Elnemma, Bull. Korean Chem. Soc., 25, 127 (2004).
- 13. Y. Ahwoo, Microchem. J., 78, 167 (2004).
- 14. D.M. Davies and M.E. Deary, Analyst, 113, 1477 (1988).
- 15. S.P. Masti, J. Seethramappa, M. Melwanki and N. Motohashi, Anal. Sci., 18, 167 (2002).
- 16. M. Kayoko, G. Kunio and N. Hideki, J. Forensic Toxicol., 23, 152 (2005).
- 17. A.M. Osman, R. Hilhorts and C. Laane, Anal. Chim. Acta, 422, 81 (2000).
- 18. F. Di. Furia, M. Prato, U. Quintily, S. Salvagno and G. Scorrano, Analyst, 109, 985 (1984).
- 19. U. Pinkernell and S. Effekman, J. Chromatogr. A, 730, 203 (1996).
- 20. S. Effekman, J. Chromatog. A, 855, 551 (1999).
- 21. E. Athanasiou-Malaki, M.A. Koupparis and T.P. Hadjiioannou, Anal. Chem., 61, 1358 (1989).

(Received: 26 June 2008; Accepted: 17 February 2009) AJC-7245